Study and monitoring of the anaerobic digestion process in batch regime of Arundo donax L., including scale-up evaluation

DOI:

https://doi.org/10.19137/semiarida.2025(Supl.).51-63

Keywords:

Biomethane Potential, Lab-scale Reactor, Giant Reed

Abstract

The utilization of perennial energy crops such as Arundo donax L., with high productivity and low input requirements, has attracted interest as a sustainable alternative for bioenergy generation. In this context, the treatment of biomass through anaerobic digestion has increased, driven by the assessment of the main benefits associated with this technology as an effective strategy for converting organic matter into energy in the form of biogas. This study evaluated the anaerobic digestion of Arundo donax L. in a temperature-controlled batch reactor with a working volume of 7 L, operated under mesophilic conditions and using sludge from a wastewater treatment plant as inoculum. The process was assessed by monitoring physicochemical parameters in the reactor and quantifying biomethane production. In parallel, a standardized assay was performed to determine the Biomethane Potential (BMP) of the biomass. The results showed a BMP of 220.07 ± 2.7 mL CH₄ g VS-1, while the specific biomethane production in the batch reactor reached 131.60 mL CH₄ g VS-1, representing a 40 % reduction attributable to process scaling. This discrepancy may be associated with factors such as mixing efficiency, mass transfer limitations, or the actual biodegradability of the biomass under operational conditions. The monitored physicochemical parameters confirmed the stability of the process, indicating that the system operated under controlled conditions without signs of inhibition.

Downloads

Download data is not yet available.

Author Biographies

Jorgelina Mussi, Facultad de Ingeniería de la UNICEN y Consejo Nacional de Investigaciones Científicas y Técnicas

Jorgelina Mussi is a Chemical Engineer, graduated from the Faculty of Engineering at UNICEN, and since 2023, a Ph.D. student in Engineering with a specialization in Chemical Technology at the same institution. She is a member of the INTELYMEC research group and works as a Full-Time Teaching Assistant in the Chemical Engineering and Food Technology degree programs.

She participates in R&D projects related to the valorization of lignocellulosic waste and the production of bioenergy through anaerobic digestion. She has co-supervised undergraduate research fellowships, published scientific articles, and presented work at conferences.

Alejandra Marisa Manzur, Facultad de ingeniería UNICEN

He has been a faculty member at the institution for 19 years. He currently holds a full-time teaching position in the area of Applied Technologies for Industrial Processes within the Department of Chemical Engineering and Food Technology, serving as Senior Teaching Assistant in the courses Chemical Processes I, Chemical Processes II, and Process Laboratory. He is a Category V Researcher and a member of the Bioenergy Research Line of the INTELYMEC group, working on the project "Modeling the kinetics of biogas production from plant-based biomass through anaerobic digestion processes." His work contributes tools for simulating future energy scenarios and for developing a low-carbon and more sustainable energy matrix by identifying technological needs.

He actively participates in research projects related to the topic of Bioenergy within the INTELYMEC group. In terms of human resource development, he has mentored scholarship holders and has served on evaluation committees for final thesis projects. He is also actively involved in Extension activities. He has authored scientific and technical publications presented at national and international conferences, as well as in scientific journals.

Since 2023, he has been responsible for the Pilot Plant at the Department of Chemical Engineering, Faculty of Engineering of Olavarría. Institutionally, he is engaged in activities of the Academic Council of the Chemical Engineering degree program.

From 1997 to 2002, he worked as a Process Engineer at a Juice and Soft Drinks Plant.

Javier Alejandro Grosso, Facultad de Agronomía UNICEN

Javier Alejandro Grosso is an Agronomist, graduated from the Faculty of Agronomy in Azul (UNCPBA), where he also earned a Ph.D. in Agricultural Sciences with a specialization in Environment and Natural Resources. He was a fellow of the Scientific Research Commission (CIC) and currently serves as an Associate Professor with a full-time appointment in the area of Agricultural Machinery in the Agronomic Engineering program, and in Agricultural Production in the Agricultural Management degree program, both at the Faculty of Agronomy, UNCPBA.

He actively participates in research projects related to precision agriculture, site-specific management, efficient input use, soil compaction, and the development of technologies applied to agricultural production, including the incorporation of second-generation energy crops. He has led and collaborated on research and extension projects and has authored scientific and technical publications presented at national and international conferences, as well as book chapters and journal articles.

In the field of human resource development, he has mentored fellows and undergraduate students, served on thesis evaluation committees, and acted as a jury member in faculty selection processes. He also engages in training activities and has participated in interdisciplinary working teams, developing outreach initiatives with the productive sector.

His institutional work includes participation in academic committees and collaboration with other academic units and institutions.

Laura Lázaro, Facultad de Agronomía UNICEN

Laura Lázaro is an Agricultural Engineer, M.Sc., and Ph.D. She has been a teaching researcher at the Faculty of Agronomy (FA) of the National University of the Center of the Province of Buenos Aires (UNCPBA) since 1992. She currently holds a tenured position as Associate Professor, responsible for the courses Cereals and Oilseeds and Foundations of Plant Production in the Agronomic Engineering program at the Faculty of Agronomy.

She holds a Category III designation in the national system for the classification of research faculty in public universities. She leads research projects related to crop production in the Pampas region and has directed or participated in over 18 research and/or extension projects. She is the head of the Wheat Industrial Quality Laboratory at the FA.

At the postgraduate level, she served as Director of the Ph.D. Program in Agricultural Sciences at FA-UNCPBA and contributes to the teaching of courses within that program. She has supervised and co-supervised numerous undergraduate theses, postgraduate dissertations, and student research or training fellowships.

She has published scientific articles in national and international journals and has presented a significant number of papers at conferences, symposia, and workshops. In terms of institutional management, she is the Director of CIISAS (Integrated Research Center on Sustainable Agronomic Systems, FA-UNCPBA) and formerly served as Head of the Department of Plant Production at the same Faculty of Agronomy.

Veronica Elizabeth Córdoba, Facultad de ingeniería UNICEN

Verónica Córdoba is a Chemical Engineer and holds a Ph.D. in Science and Technology with a specialization in Chemistry from the National University of San Martín. She serves as an Associate Professor at the Faculty of Engineering of the National University of the Center of the Province of Buenos Aires (UNCPBA), teaching in the Chemical Engineering and Food Technology programs. She is an Assistant Researcher at CONICET, and her research focuses on the energy recovery from waste and biomass through anaerobic digestion processes.

She has participated in over 15 research projects, serving as principal investigator in 4 and co-investigator in 2. She has extensive experience in supervising and co-supervising undergraduate thesis projects and research scholarships for students. She has published in national and international scientific journals and has presented numerous works at conferences, symposiums, and workshops.

At the institutional level, she is the academic coordinator of the Diploma Program in Renewable Energies and Sustainable Development at the same faculty.

References

American Public Health Association (APHA). (1999). Standard methods for the examination of water and wastewater (20th ed.).

American Society for Testing and Materials (ASTM). (1999). Annual book of ASTM standards. ASTM Bulletin.

Aquino, S., Chernicharo, C., Foresti, E., Dos Santos, M., y Monteggia, L. (2007). Metodologias para determinação da atividade metanogênica específica (AME) em lodos anaeróbios. Revista Engenharia Sanitária e Ambiental, 12, 192–201.

Baldini, M., da Borso, F., Ferfuia, C., Zuliani, F., y Danuso, F. (2017). Ensilage suitability and bio-methane yield of Arundo donax and Miscanthus × giganteus. Industrial Crops and Products, 95, 264–275. https://doi.org/10.1016/j.indcrop.2016.10.031

Belmonte, L., Mariotta, A., Binotto, N., Quicchi, A., y Bernard, M. (2023). Comparative analysis of lignocellulosic energy crops with high energetic potential: Arundo donax L. and Sorghum saccharatum. https://doi.org/10.33414/ajea.1301.2023

Chen, Y., Zhao, Z., Zou, H., Yang, H., Sun, T., Li, M., ... y Gu, L. (2019). Digestive performance of sludge with different crop straws in mesophilic anaerobic digestion. Bioresource technology, 289, 121595.

Cardoso, R., Manzur, A., Santalla, E., Lazaro, L. y Córdoba, V. (2023). Producción de bioenergía a partir de Arundo donax L., un cultivo perenne de alto potencial energético en Argentina. ENERLAC. Revista De energía De Latinoamérica Y El Caribe, 7(1).

Córdoba, V., Fernández, M. y Santalla, E. (2014). Influencia del inóculo en la digestión anaeróbica de purín de cerdo. Energías Renovables y Medio Ambiente, 34, 29-37.

Córdoba, V., Ibarlucía, D., y Santalla, E. (2022). Desarrollo y validación de un mecanismo para remover CO₂ y cuantificar la producción de CH₄ en sistemas de digestión anaeróbica. RedBioLAC, 6(1),40-45.

Corno, L., Pilu, R., Cantaluppi, E., & Adani, F. (2016b). Giant cane (Arundo donax L.) for biogas production: The effect of two ensilage methods on biomass characteristics and biogas potential. Biomass and Bioenergy, 93, 131-136. https://doi.org/10.1016/j.biombioe.2016.07.017

Craggs, L. y Gilbert, P. (2018). Reducción sostenible de gases de efecto invernadero en sistemas bioenergéticos: cambio climático: un factor impulsor y limitante para la bioenergía. En Balances de gases de efecto invernadero en sistemas bioenergéticos (pp. 1-10). Academic Press. https://doi.org/10.1016/B978-0-08-101036-5.00001-X

Enrique, C., y Monroy, C. (2024). Crecimiento económico ¿amenaza de la supervivencia? https://www.eesi.org/topics/fossil-fuels/description

Gerardi, M. H. (2003). The microbiology of anaerobic digesters. John Wiley & Sons.

González Suárez, A., Hernández Alfonso, G. y Pereda Reyes, I. (2019). Pretratamiento alcalino de bagazo de caña para mejorar la producción de biometano. Centro Azúcar, 46(4), 79–88.

Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., ... y Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515-2522. https://doi.org/10.2166/wst.2016.336

Holliger C., Fruteau de Laclos H., & Hack G. (2017). Methane production of full-scale anaerobic digestion plants calculated from substrate’s biomethane potentials compares well with the one measured on-site. Frontiers in Energy Research, 5(2017),12. https://doi.org/10.3389/fenrg.2017.00012

Jankowski, K. J., Dubis, B., Sokólski, M. M., Załuski, D., Bórawski, P., & Szempliński, W. (2020). Productivity and energy balance of maize and sorghum grown for biogas in a large-area farm in Poland: An 11-year field experiment. Industrial Crops and Products, 148, 112326. https://doi.org/10.1016/j.indcrop.2020.112326

Jenkins, SR, Morgan, JM y Sawyer, CL (1983). Medición de la digestión y el crecimiento de lodos anaeróbicos mediante una titulación alcalinmétrica simple. Revista (Federación de Control de la Contaminación del Agua), 448-453.

Krause, M. J., Chickering, G. W., Townsend, T. G., y Reinhart, D. R. (2016). Critical review of the methane generation potential of municipal solid waste. Critical Reviews in Environmental Science and Technology, 46(13), 1117–1182. https://doi.org/10.1080/10643389.2016.1204812

Kreuger, E., Prade, T., Escobar, F., Svensson, S., Englund, J., y Bjornsson, L. (2011). Anaerobic digestion of industrial hemp—effect of harvest time on methane energy yield per hectare. Biomass Bioenergy, 35, 893-900. https://doi.org/10.1016/j.biombioe.2010.11.005

Labatut, RA y Pronto, J.L. (2018). Tecnologías sostenibles de valorización energética de residuos: Digestión anaeróbica. En Sistemas sostenibles de valorización energética de residuos alimentarios, (pp. 47-67). Academic Press. https://doi.org/10.1016/B978-0-12-811157-4.00004-8

Martínez Campesino, L. (2014). Uso de membranas selectivas para la recuperación de nitrógeno amoniacal durante el proceso de digestión anaerobia [Tesis de grado], Universitat Politècnica de Catalunya, España.

Muñoz Rebolledo, J y Maldonado Aguirre, J. (2023). Evaluación de la influencia del volumen de reactor en la digestión anaerobia de residuos de alimentos mediante ensayos de potencial bioquímico de metano empleando el método manométrico. Universidad del Valle, Colombia.

Mussatto, S.I .y Dragone, G.M. (2016). Pretratamiento de biomasa, biorrefinerías y productos potenciales para el desarrollo de la bioeconomía. En Tecnologías de fraccionamiento de biomasa para una biorrefinería basada en materia prima lignocelulósica (pp. 1-22). Elsevier. https://doi.org/10.1016/B978-0-12-802323-5.00001-3

Obregón, J. M. R., Gutiérrez, R. B., González, L. L., Hernández, J. J. y Pérez, L. M. (2018). Análisis cinético de la biodegradabilidad anaerobia de la cachaza con pretratamiento termoalcalino en la producción de metano. Revista Amazónica Ciencia y Tecnología, 7(1), 12-18.

Ohemeng-Ntiamoah, J., y Datta, T. (2019). Perspectives on variabilities in biomethane potential test parameters and outcomes: A review of studies published between 2007 and 2018. Science of the Total Environment, 664, 1052–1062. https://doi.org/10.1016/j.scitotenv.2019.02.088

Pereyra Müller, N., Manzur, A. M., Santalla, E. M., Córdoba, V. E. (2022). Evaluación de Arundo Donax L. como biocombustible para la producción de energía térmica; Asociación Argentina de Energías Renovables y Ambiente. Energías Renovables y Medio Ambiente, 48(2), 11-17.

Ragaglini, G., Dragoni, F., Simone, M., y Bonari, E. (2014). Suitability of giant reed (Arundo donax L.) for anaerobic digestion: Effect of harvest time and frequency on the biomethane yield potential. Bioresource Technology, 152, 107–115. https://doi.org/10.1016/j.biortech.2013.11.004

Ramírez Ramírez, M. A., Carrillo Parra, A., Ruiz Aquino, F., Luján Álvarez, C., Hernández Solís, J. J., Carrillo Ávila, N., Pintor Ibarra, L. F., y Rutiaga Quiñones, J. G. (2025). Valorización de pellets combustibles usando aserrín de 23 especies de maderas mexicanas. TECNOCIENCIA Chihuahua, 19(1), e1829. https://doi.org/10.54167/tch.v19i1.1829

Rodríguez, L. D., Confalone, A. E., Lázaro, L., Pimentel, R. M., Lyra, G. B., Oliveira, J. F. D. J., Singh, S. K., Pereira, C. R. (2024). Growth of the energy crop giant reed (Arundo donax L.) and optimization of the ARMIDA model in the south-central region of Buenos Aires, Argentina. Industrial Crops and Products, 211, 118190.

Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech, 5(4), 337-353. https://doi.org/10.1007/s13205-014-0246-5

Santalla, E., Ressia, J., Córdoba, V. y Lázaro, L. (2024). Costos energéticos y emisiones de gases de efecto invernadero de la producción de carrizo gigante (Arundo donax L.) para su uso como vector de bioenergía. Revista global de economías de mercados emergentes, 16 (3), 431-451. https://doi.org/10.1177/09749101231223796

Sawatdeenarunat, C., Surendra, K.C., Takara, D., Oechsner, H., Khanal, S. K., & Kumar, S. (2015). Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource Technology, 178, 178-186. https://doi.org/10.1016/j.biortech.2014.09.103

Schievano, A., Corno, L., Adani, F., & Pilu, S. R. (2012). Più biogas a costi inferiori con Arundo o Doppia coltura.Settore AGR/13- Chimica Agraria

Špelić, K., Panjičko, M., Zupančić, G. D., Lončar, A., Brandić, I., Tomić, I., ... & Jurišić, V. (2024). Towards a sustainable energy future: Evaluating Arundo donax L. in continuous anaerobic digestion for biogas production. GCB Bioenergy, 16(5), e13135. https://doi.org/10.1111/gcbb.13135

Steinmetz, R. L. R., Mezzari, M. P., da Silva, M. L. B., Kunz, A., do Amaral, A. C., Tápparo, D. C., & Soares, H. M. (2016). Enrichment and acclimation of an anaerobic mesophilic microorganism’s inoculum for standardization of BMP assays. Bioresource Technology, 219, 21-28. https://doi.org/10.1016/j.biortech.2016.07.031

Testa, R., Foderà, M., Di Trapani, A.M., Tudisca, S., & Sgroi, F. (2016). Giant reed as energy crop for Southern Italy: An economic feasibility study. Renewable and Sustainable Energy Reviews, 58, 558–564. https://doi.org/10.1016/j.rser.2015.12.123

Uhaldegaray, M. G., Fernández, R., Kloster, N. y Quiroga, A. R. (2024). Cultivos de cobertura en sistemas ganaderos: Producción de biomasa y efectos sobre el suelo. Semiárida, 35(1), 77-86. https://doi.org/10.19137/semiarida.2025(1).77-86

Van der Berg, D. J., Teke, G. M., Görgens, J. F., & van Rensburg, E. (2024). Predicting commercial-scale anaerobic digestion using biomethane potential. Renewable Energy, 235, 121304. https://doi.org/10.1016/j.renene.2024.121304

Vasmara, C., Galletti, S., Cianchetta, S., & Ceotto, E. (2023). Advancements in giant reed (Arundo donax L.) biomass pre-treatments for biogas production: a review. Energies, 16(2), 949.

Velásquez-Piñas, J. A., Calle-Roalcaba, O. D., Miramontes-Martínez, L. R., & Alonso-Gómez, L. A. (2023). Evaluación económica y ambiental de las tecnologías de utilización del biogás y perspectivas del análisis multicriterio. Revista ION, 36(1), 29-47. https://doi.org/10.18273/revion.v36n1-2023003

Weiland, P. (2010). Biogas production: Current state and perspectives. Applied Microbiology and Biotechnology, 85, 849-860. https://doi.org/10.1007/s00253-009-2246-7

caña de castilla

Published

2025-12-23