Ability of the climate model to simulate meteorological frosts in Santa Rosa La Pampa, Argentina

DOI:

https://doi.org/10.19137/semiarida.2025(2).79-87

Keywords:

Adversity in weather, Local validation of climate models, climate change, bioclimatic frost indices

Abstract

The objective of this study was to evaluate the ability of climate change models to simulate bioclimatic frost indices in Santa Rosa La Pampa Argentina. Daily minimum temperatures observed and simulated by the CNRM (Centre National de Recherches Météorologiques), CSIRO (Commonwealth Scientific and Industrial Research Organisation), MRI (Meteorological Research Institute), and CMCC (Centro Euro-Mediterraneo per I Cambiamenti Climatici) climate models of the Coupled Model Intercomparison Project Phase 5 (CMIP5) were used. The CNRM and CSIRO models simulated first and last frost days that were within the range of observed first and last frost days during the period 1977–2010. The MRI and CMCC models simulated first and last frost days outside the range of observed days. The mean first and last frost dates simulated by the CNRM, CSIRO, and CMCC models did not differ from the observed dates. The observed variability in mean dates was adequately simulated by the CNRM and CSIRO models, but not by the MRI and CMCC models. The observed mean frost-free period did not differ from that simulated by the CNRM and CSIRO models, but did differ from that simulated by the MRI model. The CNRM and CSIRO models best simulated extreme frost dates (first and last) and the average number of frost days per year. Overall, the CNRM and CSIRO models adequately simulated daily minimum temperatures and bioclimatic frost indices in the western Pampas region of Argentina during the period 1977–2010. These results allow to conclude that the minimum temperature projections from the CNRM and CSIRO models can be used to study the future evolution of bioclimatic frost indices and their variability in the context of different climate change scenarios.

Downloads

Download data is not yet available.

Author Biographies

Mariano Méndez, Universidad Nacional de La Pampa Consejo Nacional de Ciencia y Tecnología

Doctor en Agronomía. Profesor Asociado, Cátedra Agrometeorología, Facultad Agronomía UNLPam. Balance de Agua de agua en el suelo. Cambió Climático. Erosión Eólica. Emisión de materia particulado.

Graciela Teresa Vergara, Independiente ex Universidad Nacional de La Pampa

Magister en Ciencias Agropecuarias Ex. Profesora Asociada, Cátedra Agrometeorología, Facultad Agronomía UNLPam. Ex Responsable de la Cátedra Agrometeorología, Facultad Agronomía UNLPam. Bases de datos Agrometeorológicos. Balance de Agua en el suelo.

Guillermo Casagrande, Independiente ex Universidad Nacional de La Pampa

Ingeniro Agrónomo Ex. Profesor Asociado, Cátedra Agrometeorología, Facultad Agronomía UNLPam.
Ex. Responsable de la, Cátedra Agrometeorología, Facultad Agronomía UNLPam. Ex responsable regional del área agrometeorológica INTA. Bases de datos Agrometeorológicos. Observación meteorológica Agrometeorología general.

References

Anapalli, S. S., Ahuja, L. R., Gowda, P. H., Ma, L., Marek, G., Evett, S. R., & Howell, T. A. (2016). Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters. Agricultural Water Management, 177, 274-283. https://doi.org/10.1016/j.agwat.2016.08.009

Altieri, M.A., & Nicholls, C.I. (2017). The Adaptation and Mitigation Potential of Traditional Agriculture in a Changing Climate. Climatic Change, 140, 33-45. https://doi.org/10.1007/s10584-013-0909-y

Anandhi, A., Perumal, S., Gowda, P. H., Knapp, M., Hutchinson, S., Harrington, J., Murray, L., Kirkham, M. B., & Rice, C.W., (2013). Long- Term Spatial and Temporal Trends in Frost Indices in Kansas, USA. Climatic Change, 120, 169-181. https://doi.org/10.1007/s10584-013-0794-4

Biazar, S. M., & Ferdosi, F. B. (2020). An Investigation on Spatial and Temporal Trends in Frost Indices in Northern Iran. Theoretical and Applied Climatology, 141, 907-920. https://doi.org/10.1007/s00704-020-03248-7

Charalampopoulos, I., (2021). Agrometeorological Conditions and Agroclimatic Trends for the Maise and Wheat Crops in the Balkan Region. Atmosphere, 12, 671. https://doi.org/10.3390/atmos12060671

Charalampopoulos, I., & Droulia, F. (2022). Frost Conditions Due to Climate Change in South-Eastern Europe via a High-Spatiotemporal-Resolution Dataset. Atmosphere, 13, 1407. https://doi.org/10.3390/atmos13091407

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L. y Robledo, C. W. (2017). InfoStat v. 2017. Universidad Nacional de Córdoba. http://www.infostat.com.ar/

Erlat, E., & Türkeş, M. (2016). Dates of Frost Onset, Frost End and the Frost-Free Season in Turkey: Trends, Variability and Links to the North Atlantic and Arctic Oscillation Indices, 1950-2013. Climate Research, 69, 155-176. https://doi.org/10.3354/cr01397

Fernández-Long, M. E., Barnatán, I., Dominici, C., y Murphy, G. (2016). Información agroclimática de las heladas en la argentina: generación y uso. Meteorológica, 41, 7-31. http://www.meteorologica.org.ar/wp-content/uploads/2017/03/Fernandez-Long_Vol42N2.pdf

Holleman, C., Rembold, F., Crespo, O. & Conti, V. (2020). The impact of climate variability and extremes on agriculture and food security – An analysis of the evidence and case studies. Background paper for The State of Food Security and Nutrition in the World 2018. FAO Agricultural Development Economics Technical Study No. 4. Rome, FAO. https://doi.org/10.4060/cb2415en

Lamichhane, J. R., (2021). Risks of Late-Spring Frosts in a Changing Climate. Nature Climate Change, 11, 554-555. https://doi.org/10.1038/s41558-021-01090-x

Lovino, M. A., Müller, O. V., Berberyb, E. H., & Müller, G. V. (2018). Evaluation of CMIP5 retrospective simulations of temperature and precipitation in northeastern Argentina. International Journal of Climatology, 38, e1158-e1175. https://doi.org/10.1002/joc.5441

Méndez, M., Vergara, G., Casagrande, G., y Bongianino, S. (2021). Clasificación climática de la región agrícola de la provincia de La Pampa, Argentina. Semiárida, 31(2), 9–20. https://cerac.unlpam.edu.ar/index.php/ semiarida/article/view/5988

Méndez, M., Vergara, G., y Casagrande, G. (2022). SUPLEMENTO 1: Estadísticas agroclimáticas de la Facultad de Agronomía, Santa Rosa, La Pampa, Argentina. Periodo 1977-2021. Semiárida, 32, 7-41. https://cerac.unlpam.edu.ar/index.php/semiarida/article/view/6559

Miao, C., Duan, Q., Sun Q. Huang, Y., Kong, D., Yang, T., Ye, A., Di, Z., & Gong. W. (2014). Assessment of CMIP5 climate models and projected temperature changes over northern Eurasia. Environmental Research Letters, 9, 5, Article ID 055007. https://iopscience.iop.org/article/10.1088/1748-9326/9/5/055007

Moise, A., Wilson, L., Grose M., Whetton, P., Watterson, I., Bhend, J., Bathols, J., Hanson, L., Erwin, T., Bedin, T., Heady, C., & Rafter, T. (2015) “Evaluation of CMIP3 and CMIP5 models over the Australian region to inform confidence in projections,” Australian Meteorological and Oceanographic Journal, 65(1),19-53. https://doi.org/10.22499/2.6501.004

Murphy, G. M. (2008). Atlas agroclimático de la Argentina. Editorial de la Facultad Agronomía Universidad Nacional de Buenos Aires. https://ciag.agro.uba.ar/static/pdf/Atlas_2000.pdf

Papagiannaki, K., Lagouvardos, K., Kotroni, V., & Papagiannakis, G. (2014) Agricultural Losses Related to Frost Events: Use of the 850 HPa Level Temperature as an Explanatory Variable of the Damage Cost. Natural Hazards and Earth System Sciences, 14, 2375-2386. https://doi.org/10.5194/nhess-14-2375-2014

Raghavan, S.V., Liu, J., Nguyen, N.S., Vu, M.T., & Liong, S., (2018). Assessment of CMIP5 historical simulations of rainfall over Southeast Asia. Theoretical and Applied Climatology, 132(3-4), 989-1002. https://doi.org/10.1007/s00704-017-2111-z

Ruml, M., Vuković, A., Vujadinović, M., Djurdjević, V., Ranković-Vasić, Z., Atanacković, Z., Sivčev, B., Marković, N., Matijašević, S., & Petrović, N., (2012). On the Use of Regional Climate Models: Implications of Climate Change for Viticulture in Serbia. Agricultural and Forest Meteorology, 158-159, 53-62. https://doi.org/10.1016/j.agrformet.2012.02.004

Rupp, D. E., Abatzoglou, J. T., Hegewisch, K. C., Mote, P. W. (2013). Evaluation of CMIP5 20th century climate simulations for the Pacific northwest USA. Journal of Geophysical Research: Atmospheres, 118(19), 10884-10906. https://doi.org/10.1002/jgrd.50843

Secretaría de Ambiente y Desarrollo Sustentable de la Nación, (2014). Tercera Comunicación Nacional sobre Cambio Climático. “Cambio Climático en Argentina, Tendencias y Proyecciones” (Centro de Investigaciones del Mar y la Atmósfera). Buenos Aires, Argentina. http://3cn.cima.fcen.uba.ar/3c_inicio.php

Wypych, A., Ustrnul, Z., Sulikowska, A., Chmielewski, F. M., & Bochenek, B. (2017). Spatial and Temporal Variability of the Frost-Free Season in Central Europe and Its Circulation Background. International Journal of Climatology, 37, 3340-3352. https://doi.org/10.1002/joc.4920

Xia, J., Yan, Z., & Wu, P., (2013). Multidecadal variability in local growing season during 1901-2009. Climate Dynamics, 41, 295-305. https://doi.org/10.1007/s00382-012-1438-5

plantas heladas

Published

2025-07-11

How to Cite

Méndez, M., Vergara, G. T., & Casagrande, G. (2025). Ability of the climate model to simulate meteorological frosts in Santa Rosa La Pampa, Argentina. Semiárida, 35(2), 79–87. https://doi.org/10.19137/semiarida.2025(2).79-87

Issue

Section

Comunicaciones