Ability of the climate model to simulate meteorological frosts in Santa Rosa La Pampa, Argentina
DOI:
https://doi.org/10.19137/semiarida.2025(2).79-87Keywords:
Adversity in weather, Local validation of climate models, climate change, bioclimatic frost indicesAbstract
The objective of this study was to evaluate the ability of climate change models to simulate bioclimatic frost indices in Santa Rosa La Pampa Argentina. Daily minimum temperatures observed and simulated by the CNRM (Centre National de Recherches Météorologiques), CSIRO (Commonwealth Scientific and Industrial Research Organisation), MRI (Meteorological Research Institute), and CMCC (Centro Euro-Mediterraneo per I Cambiamenti Climatici) climate models of the Coupled Model Intercomparison Project Phase 5 (CMIP5) were used. The CNRM and CSIRO models simulated first and last frost days that were within the range of observed first and last frost days during the period 1977–2010. The MRI and CMCC models simulated first and last frost days outside the range of observed days. The mean first and last frost dates simulated by the CNRM, CSIRO, and CMCC models did not differ from the observed dates. The observed variability in mean dates was adequately simulated by the CNRM and CSIRO models, but not by the MRI and CMCC models. The observed mean frost-free period did not differ from that simulated by the CNRM and CSIRO models, but did differ from that simulated by the MRI model. The CNRM and CSIRO models best simulated extreme frost dates (first and last) and the average number of frost days per year. Overall, the CNRM and CSIRO models adequately simulated daily minimum temperatures and bioclimatic frost indices in the western Pampas region of Argentina during the period 1977–2010. These results allow to conclude that the minimum temperature projections from the CNRM and CSIRO models can be used to study the future evolution of bioclimatic frost indices and their variability in the context of different climate change scenarios.
Downloads
References
Anapalli, S. S., Ahuja, L. R., Gowda, P. H., Ma, L., Marek, G., Evett, S. R., & Howell, T. A. (2016). Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters. Agricultural Water Management, 177, 274-283. https://doi.org/10.1016/j.agwat.2016.08.009
Altieri, M.A., & Nicholls, C.I. (2017). The Adaptation and Mitigation Potential of Traditional Agriculture in a Changing Climate. Climatic Change, 140, 33-45. https://doi.org/10.1007/s10584-013-0909-y
Anandhi, A., Perumal, S., Gowda, P. H., Knapp, M., Hutchinson, S., Harrington, J., Murray, L., Kirkham, M. B., & Rice, C.W., (2013). Long- Term Spatial and Temporal Trends in Frost Indices in Kansas, USA. Climatic Change, 120, 169-181. https://doi.org/10.1007/s10584-013-0794-4
Biazar, S. M., & Ferdosi, F. B. (2020). An Investigation on Spatial and Temporal Trends in Frost Indices in Northern Iran. Theoretical and Applied Climatology, 141, 907-920. https://doi.org/10.1007/s00704-020-03248-7
Charalampopoulos, I., (2021). Agrometeorological Conditions and Agroclimatic Trends for the Maise and Wheat Crops in the Balkan Region. Atmosphere, 12, 671. https://doi.org/10.3390/atmos12060671
Charalampopoulos, I., & Droulia, F. (2022). Frost Conditions Due to Climate Change in South-Eastern Europe via a High-Spatiotemporal-Resolution Dataset. Atmosphere, 13, 1407. https://doi.org/10.3390/atmos13091407
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L. y Robledo, C. W. (2017). InfoStat v. 2017. Universidad Nacional de Córdoba. http://www.infostat.com.ar/
Erlat, E., & Türkeş, M. (2016). Dates of Frost Onset, Frost End and the Frost-Free Season in Turkey: Trends, Variability and Links to the North Atlantic and Arctic Oscillation Indices, 1950-2013. Climate Research, 69, 155-176. https://doi.org/10.3354/cr01397
Fernández-Long, M. E., Barnatán, I., Dominici, C., y Murphy, G. (2016). Información agroclimática de las heladas en la argentina: generación y uso. Meteorológica, 41, 7-31. http://www.meteorologica.org.ar/wp-content/uploads/2017/03/Fernandez-Long_Vol42N2.pdf
Holleman, C., Rembold, F., Crespo, O. & Conti, V. (2020). The impact of climate variability and extremes on agriculture and food security – An analysis of the evidence and case studies. Background paper for The State of Food Security and Nutrition in the World 2018. FAO Agricultural Development Economics Technical Study No. 4. Rome, FAO. https://doi.org/10.4060/cb2415en
Lamichhane, J. R., (2021). Risks of Late-Spring Frosts in a Changing Climate. Nature Climate Change, 11, 554-555. https://doi.org/10.1038/s41558-021-01090-x
Lovino, M. A., Müller, O. V., Berberyb, E. H., & Müller, G. V. (2018). Evaluation of CMIP5 retrospective simulations of temperature and precipitation in northeastern Argentina. International Journal of Climatology, 38, e1158-e1175. https://doi.org/10.1002/joc.5441
Méndez, M., Vergara, G., Casagrande, G., y Bongianino, S. (2021). Clasificación climática de la región agrícola de la provincia de La Pampa, Argentina. Semiárida, 31(2), 9–20. https://cerac.unlpam.edu.ar/index.php/ semiarida/article/view/5988
Méndez, M., Vergara, G., y Casagrande, G. (2022). SUPLEMENTO 1: Estadísticas agroclimáticas de la Facultad de Agronomía, Santa Rosa, La Pampa, Argentina. Periodo 1977-2021. Semiárida, 32, 7-41. https://cerac.unlpam.edu.ar/index.php/semiarida/article/view/6559
Miao, C., Duan, Q., Sun Q. Huang, Y., Kong, D., Yang, T., Ye, A., Di, Z., & Gong. W. (2014). Assessment of CMIP5 climate models and projected temperature changes over northern Eurasia. Environmental Research Letters, 9, 5, Article ID 055007. https://iopscience.iop.org/article/10.1088/1748-9326/9/5/055007
Moise, A., Wilson, L., Grose M., Whetton, P., Watterson, I., Bhend, J., Bathols, J., Hanson, L., Erwin, T., Bedin, T., Heady, C., & Rafter, T. (2015) “Evaluation of CMIP3 and CMIP5 models over the Australian region to inform confidence in projections,” Australian Meteorological and Oceanographic Journal, 65(1),19-53. https://doi.org/10.22499/2.6501.004
Murphy, G. M. (2008). Atlas agroclimático de la Argentina. Editorial de la Facultad Agronomía Universidad Nacional de Buenos Aires. https://ciag.agro.uba.ar/static/pdf/Atlas_2000.pdf
Papagiannaki, K., Lagouvardos, K., Kotroni, V., & Papagiannakis, G. (2014) Agricultural Losses Related to Frost Events: Use of the 850 HPa Level Temperature as an Explanatory Variable of the Damage Cost. Natural Hazards and Earth System Sciences, 14, 2375-2386. https://doi.org/10.5194/nhess-14-2375-2014
Raghavan, S.V., Liu, J., Nguyen, N.S., Vu, M.T., & Liong, S., (2018). Assessment of CMIP5 historical simulations of rainfall over Southeast Asia. Theoretical and Applied Climatology, 132(3-4), 989-1002. https://doi.org/10.1007/s00704-017-2111-z
Ruml, M., Vuković, A., Vujadinović, M., Djurdjević, V., Ranković-Vasić, Z., Atanacković, Z., Sivčev, B., Marković, N., Matijašević, S., & Petrović, N., (2012). On the Use of Regional Climate Models: Implications of Climate Change for Viticulture in Serbia. Agricultural and Forest Meteorology, 158-159, 53-62. https://doi.org/10.1016/j.agrformet.2012.02.004
Rupp, D. E., Abatzoglou, J. T., Hegewisch, K. C., Mote, P. W. (2013). Evaluation of CMIP5 20th century climate simulations for the Pacific northwest USA. Journal of Geophysical Research: Atmospheres, 118(19), 10884-10906. https://doi.org/10.1002/jgrd.50843
Secretaría de Ambiente y Desarrollo Sustentable de la Nación, (2014). Tercera Comunicación Nacional sobre Cambio Climático. “Cambio Climático en Argentina, Tendencias y Proyecciones” (Centro de Investigaciones del Mar y la Atmósfera). Buenos Aires, Argentina. http://3cn.cima.fcen.uba.ar/3c_inicio.php
Wypych, A., Ustrnul, Z., Sulikowska, A., Chmielewski, F. M., & Bochenek, B. (2017). Spatial and Temporal Variability of the Frost-Free Season in Central Europe and Its Circulation Background. International Journal of Climatology, 37, 3340-3352. https://doi.org/10.1002/joc.4920
Xia, J., Yan, Z., & Wu, P., (2013). Multidecadal variability in local growing season during 1901-2009. Climate Dynamics, 41, 295-305. https://doi.org/10.1007/s00382-012-1438-5

Downloads
Published
How to Cite
Issue
Section
License
La Editorial de la Universidad Nacional de La Pampa (EdUNLPam) exigirá a los/as autores/as la firma del siguiente documento:
La EdUNLPam lleva a cabo la publicación del artículo: (Título del Artículo) en SEMIÁRIDA Rev.Fac.Agron UNLPam ISSN 2362-4337 (impresa) ISSN 2408-4077 (en línea), del cual el/los abajo firmantes son autores de una o más partes. En el mismo acto, el/los autores entregan exclusivamente a la EdUNLPam todos sus derechos protegidos por las leyes de propiedad intelectual que rigen en la Argentina para reproducir, publicar, editar, fijar, comunicar y transmitir públicamente en cualquier formato o medio impreso o electrónico, inclusive internet, el artículo enviado a publicación e incluirlo en índices o bases de datos nacionales e internacionales. A cambio, la EdUNLPam entrega a los autores la autorización para la publicación o reimpresión con ines académicos y educativos en cualquier libro o medio de divulgación, con la sola obligación de citar el artículo original publicado en la EdUNLPam. Cada autor acuerda en que el material provisto a la EdUNLPam es un trabajo original, que no ha sido impreso o publicado en cualquier otro medio con anterioridad y que no vulnera derechos de terceros. El Primer autor tendrá la posibilidad de leer y corregir el artículo ya editado como “prueba de galera”, pero si el autor no devolviera esas correcciones de la prueba de galera dentro del tiempo especificado, el proceso de producción y publicación podrá proseguir sin la aprobación del autor. El/los autor/es no recibirán compensación monetaria de la EdUNLPam por el uso del material contenido en este artículo y asumen la responsabilidad de las opiniones vertidas en él.