Wheat grain yield improvement with Azospirillum argentinense in the semi-arid Pampas region

DOI:

https://doi.org/10.19137/semiarida.2025(2).33-40

Keywords:

dryland agriculture, Triticum aestivum, seed treatments, plant growth promoting microorganisms

Abstract

The use of plant growth-promoting microorganisms in rainfed cropping systems is an agronomic strategy aimed at alleviating abiotic stress and enhancing crop performance. However, evidence on their effectiveness under variable environmental conditions in semi-arid regions remains limited. This study evaluated the impact of seed inoculation with Azospirillum argentinense Az39 on yield components and grain production in wheat (Triticum aestivum L.) grown under representative conditions of the central semi-arid Pampas. Field trials were conducted over three consecutive growing seasons (2020–2022) at seven locations characterized by Entic and Petrocalcic Haplustolls. On average, inoculated treatments achieved an 8.9 % increase in grain yield compared to the non-inoculated control. Yield gains were primarily associated with increased grain number and grain filling, particularly in seasons with moderate water limitations during early crop development. These results support the potential of A. argentinense Az39 as a biological input to improve wheat productivity under dryland farming conditions in semi-arid environments.

Downloads

Download data is not yet available.

Author Biographies

Eugenia Gallace, Universidad Nacional de La Pampa

Ingeniera Agrónoma, Magister en Producción Agropecuaria en Regiones Semiáridas. Microbiología Agrícola. Trabaja en la Facultad de Agronomía UNLPam- CONICET.

Martin Diaz-Zorita, Universidad Nacional de La Pampa

Ingeniero Agrónomo. Máster. Doctor en Fisiología de cultivos. Trabaja en la  Facultad de Agronomía UNLPam- CONICET.

References

Acreche, M. M, & Slafer, G. A. 2006. Grain weight response to increases in number of grains in wheat in a Mediterranean area. Field Crops Research, 98, 52-59.

Álvarez, C. O. (2020). La importancia del agua para producir trigo en la región semiárida y subhúmeda pampeana. Notas Agrícolas Pampeanas, 1, 7-8.

Cassán, F., & Díaz-Zorita, M. (2016). Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology and Biochemistry, 103, 117-130. https://doi.org/10.1016/j.soilbio.2016.08.020

Cassán, F., Coniglio, A., López, G., Molina, R., Nievas, S., Le Noir de Carlan, C., Donadio, F., Torres, D., Rosas, S., Olivera Pedrosa, F., de Souza, E., Díaz-Zorita, M., Bashan, L., & Mora, V. (2020). Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and Fertility of Soils, 56, 461-479. https://doi.org/10.1007/s00374-020-01463-y

Castillo, J. M. (2020). Evaluación de la aplicación conjunta de dosis recomendadas y reducidas de Azospirillum brasilense Az 39 INTA y fertilización nitrogenada sobre el rendimiento y margen bruto en trigo (Triticum aestivum L.). [Trabajo Final de Aplicación], Universidad Nacional de Lujan, Argentina. http://ri.unlu.edu.ar/xmlui/handle/rediunlu/962

Di Rienzo, J. A., Casanoves, F., Balzarini, M. González, L., Tablada, M. & Robledo. C. W. (2020). InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

Di Salvo, L. P., Ferrando, L., Fernández-Scavino, A., & García de Salomone, I. (2018). Microorganisms reveal what plants do not: Wheat growth and rhizosphere microbial communities after Azospirillum brasilense inoculation and nitrogen fertilization under field conditions. Plant and Soil, 424, 405-417. https://doi.org/10.1007/s11104-017-3548-7

Díaz-Zorita, M. (2019). Aprendizajes de respuestas de cultivos a la inoculación con Azospirillum spp. en condiciones extensivas. JOBMAS 2019. INTA-UNLZ-IIPAAS. 25-26 de abril de 2019. Lomas de Zamora, Buenos Aires, Argentina.

Díaz-Zorita, M., & Fernández-Canigia, M. V. (2009). Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. European Journal of Soil Biology, 45, 3-11. https://doi.org/10.1016/j.ejsobi.2008.07.001

Díaz-Zorita, M., Fernández-Canigia, M. V., Bravo, O. Á., Berger, A., & Satorre, E. H. (2015). Field evaluation of extensive crops inoculated with Azospirillum sp. En F. Cassán, Y. Okon, & C. Creus (Eds.), Handbook for Azospirillum (pp. 1-15). Springer. https://doi.org/10.1007/978-3-319-06542-7_24

dos Santos Ferreira, N., Coniglio, A., Puente, M., Sant’Anna, F. H., Maroniche, G., García, J., Molina, R., Nievas, S., Gazolla Volpiano, C., Ambrosini, A., Passaglia, L. M. P., Pedraza, R. O., Massena Reis, V., Jerri Édson Zill, J. E., & Cassan, F. (2022). Genome-based reclassification of Azospirillum brasilense Az39 as the type strain of Azospirillum argentinense sp. nov. International Journal of Systematic and Evolutionary Microbiology, 72, 005475. https://doi.org/10.1099/ijsem.0.005475

Fukami, J., Cerezini, P. & Hungria, M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, 8, 73. https://doi.org/10.1186/s13568-018-0608-1

Gallace, E., Dalmasso, L., & Díaz-Zorita, M. (2021). Estimulantes y microorganismos mejoradores del crecimiento aplicados en tratamientos de semillas de trigo. Notas Agrícolas Pampeanas, 3, 25-27.

García de Salamone, I. E., Di Salvo, L. P., Escobar Ortega, J. S., Boa Sorte, P. M., Urquiaga, S., & Teixeira, K. R. (2010). Field response of rice paddy crop to Azospirillum inoculation: Physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant and Soil, 336, 351-362. https://doi.org/10.1007/s11104-010-0445-5

García de Salamone, I. E., Funes, J. M., Di Salvo, L. P., Escobar Ortega, J. S., Auria, F., Ferrando, L., & Fernández Scavino, A. (2012). Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: Impact of plant genotypes on the rhizosphere microbial communities and field crop production. Applied Soil Ecology, 61, 196-204. https://doi.org/10.1016/j.apsoil.2011.12.012

García, J. E., Puente, M. L., Maroniche, G. A., & Perticari, A. (2016). Estudio de Azospirillum como tecnología aplicable en los cultivos de trigo y maíz. En Microbiología Agrícola. Un aporte de la investigación en Argentina (Segunda ed., Capítulo 20). Universidad Nacional de Santiago del Estero (UNSE). Magna Publicaciones.

Ghosh, D., Gupta, A. & Mohapatra, S. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World J Microbiol Biotechnol, 35, 90 (2019). https://doi.org/10.1007/s11274-019-2659-0

Kumar, J. S., Patel, V. S., Meena, P. S., & Ramteke, P. W. (2019). Plant growth-promoting rhizobacteria: Strategies to improve abiotic stresses under sustainable agriculture. Journal of Plant Nutrition, 42(11-12), 1402-1415. https://doi.org/10.1080/01904167.2019.1616757

Naiman, A. D., Latrónico, A., & García de Salamone, I. E. (2009). Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: Impact on the production and culturable rhizosphere microflora. European Journal of Soil Biology, 45, 44-51. https://doi.org/10.1016/j.ejsobi.2008.11.001

Okon, Y. C., Labandera-Gonzales, C., Lage, M., & Lage, P. (2015). Agronomic applications of Azospirillum and other PGPR. En F. J. de Bruijn (Ed.), Biological nitrogen fixation (Vol. 2, pp. 925-936). John Wiley & Sons Inc. https://doi.org/10.1002/9781119053095

Okon, Y., & Labandera-González, C. A. (1994). Agronomic applications of Azospirillum: An evaluation of 20 years worldwide field inoculation. Soil Biology and Biochemistry, 26, 1591-1601. https://doi.org/10.1016/0038-0717(94)90311-5

Palmero, F., Hang, S. B., Lucini, E. I., Bigattón, E. D., Davidenco, V., & Díaz-Zorita, M. (2020). Modificaciones en el crecimiento temprano de trigo (Triticum aestivum L.) en presencia de Azospirillum brasilense y de Pseudomonas psychrophila. AgriScientia, 37, 53-62. https://doi.org/10.31047/1668.298x.v37.n1.27564

Pedraza-Segura L, C. A., Gutiérrez, K. G. Maldonado-Ruiz-Esparza, I. R., & Quevedo, I. R. (2024). Plant growth-promoting microorganisms (PGPMs): A path to sustainable agriculture and ecosystem restoration. Reference Module in Materials Science and Materials Engineering. Elsevier. https://doi.org/10.1016/B978-0-323-95486-0.00094-6

Pereg, L., de-Bashan, L. E., & Bashan, Y. (2016). Assessment of affinity and specificity of Azospirillum for plants. Plant and Soil, 399, 389-414. https://doi.org/10.1007/s11104-015-2778-9

Sinclair, T. R., & Jamieson, P. D. 2006. Grain number, wheat yield, and bottling beer: An analysis. Field Crops Research, 98, 60-67. https://doi.org/10.1016/j.fcr.2005.12.006

Vergara, G., Casagrande, G., & Mendez, M. J. (2022). Estadísticas agroclimáticas de la Facultad de Agronomía, Santa Rosa, La Pampa, Argentina. Periodo 1977-2021. Semiárida, 32(Supl. 1), 7-41. https://cerac.unlpam.edu.ar/index.php/semiarida/article/view/6559/7773

Yaghoubian, I., Modarres-Sanavy, S. A. M., & Smith, D. L. (2022). Plant growth promoting microorganisms (PGPM) as an eco-friendly option to mitigate water deficit in soybean (Glycine max L.): Growth, physio-biochemical properties and oil content. Plant Physiology and Biochemistry, 191, 55-66. https://doi.org/10.1016/j.plaphy.2022.09.013

Yang, P., Condrich, A., Scranton, S., Hebner, C., Lu, L., & Ali, M. A. (2024). Utilizing Plant Growth-Promoting Rhizobacteria (PGPR) to advance sustainable agriculture. Bacteria, 3(4), 434-451. https://doi.org/10.3390/bacteria3040030

Parcelas experimentales

Published

2025-07-11

How to Cite

Gallace, E., & Diaz-Zorita, M. (2025). Wheat grain yield improvement with Azospirillum argentinense in the semi-arid Pampas region. Semiárida, 35(2), 33–40. https://doi.org/10.19137/semiarida.2025(2).33-40

Issue

Section

Artículos Científicos y Técnicos