Uso de la espectroscopía ATR-FTIR para el estudio de especies adsorbidas y su interacción con superficies adsorbentes

DOI:

https://doi.org/10.19137/semiarida.2026(1).71-80

Palabras clave:

ATR-FTIR, espectros, especies, adsorción, cinética

Resumen

La espectroscopía infrarroja por transformada de Fourier con reflectancia total atenuada (ATR-FTIR) es una técnica rápida, sensible, versátil y no destructiva, capaz de evaluar in situ la adsorción de iones y moléculas en la interfaz sólido-líquido. Esta técnica permite realizar estudios en medios acuosos, tarea que es imposible de llevar a cabo con FTIR normal por las interferencias que causan las señales del agua. La información molecular adquirida por esta técnica permite la determinación del modo de adsorción, incluyendo, en algunos casos, cambios conformacionales y estructurales de la sustancia adsorbida. Además, en situaciones correctamente controladas, la espectroscopía ATR-FTIR puede usarse como una herramienta cuantitativa, para evaluar la cinética de adsorción y desorción, y la adsorción en condiciones de equilibrio. En este trabajo, a modo de ejemplo, se muestra la utilización de la espectroscopía ATR-FTIR para el estudio de la cinética de adsorción-desorción de diferentes aniones sobre goethita. La cinética fue monitoreada in situ con un control preciso del pH, la temperatura y la concentración del adsorbato durante todo el experimento mediante la utilización de una celda de flujo. Los resultados obtenidos son comparables con los obtenidos por la técnica batch, con la ventaja de ser una técnica más rápida, que permite obtener información en los primeros minutos de reacción y conocer la identidad de las especies superficiales a lo largo del tiempo de reacción.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Mariana Gentile, Universidad Nacional del Sur, Instituto de Química del Sur

Mariana B. Gentile es Licenciada en Química y becaria doctoral de CONICET. En su tesis doctoral estudia la síntesis y caracterización de óxidos de hierro y la adsorción de organofosforados.

Carina Luengo, Universidad Nacional del Sur, Instituto de Química del Sur

Carina V. Luengo es Bioquímica y Doctora en Química, Investigadora Adjunta del CONICET y Asistente de docencia en la UNS (Bahía Blanca). Su especialidad se basa en la reactividad superficial de óxidos metálicos y arcillas.

Marcelo Avena, Universidad Nacional del Sur, Instituto de Química del Sur

Marcelo J. Avena es Bioquímico y Doctor en Ciencias Químicas, Investigador Superior del CONICET y Profesor en la UNS (Bahía Blanca), especializado en la Fisicoquímica de Superficies, adsorción de iones y moléculas (arsénico, fósforo, pesticidas) en óxidos y minerales.

Citas

Andersson, P. O., Lind, P., Mattsson, A., & Österlund, L. (2008). A novel ATR-FTIR method for functionalised surface characterisation. Surface and Interface Analysis, 40(5), 623-626. https://doi.org/10.1002/sia.2661

Andrade, J., Pereira, C. G., de Almeida Junior, J. C., Viana, C. C. R., de Oliveira Neves, L. N., da Silva, P. H. F., Valenzuela Bell, M. J., & dos Anjos, V. C. (2019). FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT - Food Science and Technology, 99, 166–172. https://doi.org/10.1016/j.lwt.2018.09.079

Arroyave, J. M., Waiman, C. C., Zanini, G. P., & Avena, M. J. (2016). Effect of humic acid on the adsorption/desorption behavior of glyphosate on goethite. Isotherms and kinetics. Chemosphere, 145, 34–41. https://doi.org/10.1016/j.chemosphere.2015.11.082

Arroyave, J. M., Puccia, V., Zanini, G. P., & Avena, M. J. (2018). Surface speciation of phosphate on goethite as seen by InfraRed Surface Titrations (IRST). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 199, 57–64. https://doi.org/10.1016/j.saa.2018.03.043

Arroyave, J. M., Avena, M., & Tan, W. (2022). The two‑species phosphate adsorption kinetics on goethite. Chemosphere, 304, 135045. https://doi.org/10.1016/j.chemosphere.2022.2755

Barbeş, L., Rădulescu, C., & Stihi, C. (2014). ATR-FTIR spectrometry characterisation of polymeric materials. Romanian Reports in Physics, 66(3), 765–777. https://www.researchgate.net/publication/256297992

Blum, M. M. & John, H. (2012). Historical perspective and modern applications of Attenuated Total Reflectance – Fourier Transform Infrared Spectroscopy (ATR-FTIR). Drug Testing and Analysis, 4, 298–302. https://doi.org/10.1002/dta.374

Carabante, I., Grahn, M., Holmgren, A., Kumpiene, J., & Hedlund, J. (2009). Adsorption of As(V) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 346, 106–113. https://doi.org/10.1016/j.colsurfa.2009.05.032

Dilshad, A., Taneez, M., Younas, F., Jabeen, A., Rafiq, M. T., & Fatimah, H. (2022). Microplastic pollution in the surface water and sediments from Kallar Kahar wetland, Pakistan: occurrence, distribution, and characterization by ATR-FTIR. Environmental Monitoring and Assessment, 194, Article 511. https://doi.org/10.1007/s10661-022-10171-z

Gentile, M. B., Gómez, S. R., Avena, M. J. & Luengo, C. V. (2025). The interaction of phenylphosphonic acid with the surface of goethite: Isotherms, kinetics, electrophoretic mobility and ATR-FTIR spectroscopy. Environmental Pollution, 371, 125938. https://doi.org/10.1016/j.envpol.2025.125938

Grdadolnik, J. (2002). ATR-FTIR Spectroscopy: Its advantages and limitations. Acta chimica Slovenica, 49, 631−642.

Harrick, N. J. (1967). Internal Reflection Spectroscopy. Wiley-Interscience, New York.

Hind, A. R., Bhargava, S. K. & McKinnon, A. (2001). At the solid/liquid interface: FTIR/ATR — the tool of choice. Advances in Colloid and Interface Science, 93, 91-114. https://doi.org/10.1016/S0001-8686(00)00079-8

Ismail, A. A., van de Voort, F. R. & Sedman, J. (1997). Fourier transform infrared spectroscopy: Principles and applications. Techniques and Instrumentation in Analytical Chemistry, 18, 93-139. https://doi.org/10.1016/S0167-9244(97)80013-3

Kazarian, S. G., & Chan, K. L. A. (2006). Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(7), 858–867. https://doi.org/10.1016/ j.bbamem.2006.02.011

Luengo, C., Brigante, M., Antelo, J. & Avena, M. (2006) Kinetics of phosphate adsorption on goethite: Comparing batch adsorption and ATR-IR measurements. Journal of Colloid and Interface Science, 300, 511-518. https://doi.org/10.1016/j.jcis.2006.04.015

McQuillan, A. J. (2001). Probing Solid–Solution Interfacial Chemistry with ATR-IR Spectroscopy of Particle Films. Advanced Materials, 13, 1034-1038. https://doi.org/10.1002/1521-4095(200107)13:12/13<1034::AID-ADMA1034>3.0.CO;2-7

Mudunkotuwa, I. A., Minshid, A. A. & Grassian, V. H. (2014). ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid–solid interface in environmentally and biologically relevant media. Analyst, 139, 870-881. https://doi.org/10.1039/c3an01684f

Puccia, V., Luengo, C., & Avena, M. (2009). Phosphate desorption kinetics from goethite as induced by arsenate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348, 221–227. https://doi.org/10.1016/j.colsurfa.2009.07.026

Rahnemaie, R., Hiemstra, T. & van Riemsdijk, W. H. (2006). Inner- and outer-sphere complexation of ions at the goethite–solution interface. Journal of Colloid and Interface Science, 302, 403–416. https://doi.org/10.1016/j.jcis.2005.11.003

Rivera, D., Poston, P. E., Uibel, R. H. & Harris, J. M. (2000). In Situ Adsorption Studies at Silica/Solution Interfaces by Attenuated Total Internal Reflection Fourier Transform Infrared Spectroscopy: Examination of Adsorption Models in Normal-Phase Liquid Chromatography. Analytical Chemistry, 72, 1543-1554. https://doi.org/10.1021/ac990968h

Schmidt, M. P., Siciliano, S. D., & Peak, D. (2020). Spectroscopic Quantification of Inner- and Outer‑Sphere Oxyanion Complexation Kinetics: Ionic Strength and Background Cation Effect on Sulfate Adsorption to Hematite. ACS Earth and Space Chemistry, 4, 1765–1776. https://doi.org/10.1021/ acsearthspacechem.0c00149

Simonescu, C. M. (2012). Capítulo 2: Application of FTIR Spectroscopy in Environmental Studies. En M. A. Farrukh (Ed.), Advanced Aspects of Spectroscopy (pp. 49-84). InTech. http://dx.doi.org/10.5772/48331

Smith, B. C. (2011). Fundamentals of Fourier Transform Infrared Spectroscopy. CRC Press.

Yan, C., Huang, W., Ma, J., Xu, J., Lv, Q., & Lin, P. (2020). Characterizing the SBS polymer degradation within high content polymer modified asphalt using ATR-FTIR. Construction and Building Materials, 233, Article 117708. https://doi.org/10.1016/j.conbuildmat.2019.117708

Zenobi, M. C., Luengo, C. V., Avena, M. J., & Rueda, E. H. (2010). An ATR-FTIR study of different phosphonic acids adsorbed onto boehmite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75, 1283–1288. https://doi.org/10.1016/j.saa.2009.12.059

Gráfico de espectro

Descargas

Publicado

2025-12-23

Número

Sección

Artículos Científicos y Técnicos