Inmunodetección de Wingless int-3 (Wnt3) en la reparación de defectos óseos ortopédicos en conejos tratados con matriz ósea desmineralizada / Wingless int-3 (Wnt3) Immunodetection in the repair of orthopedic bone defects in rabbits treated with

  • Santiago Andres Audisio Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias
  • Pablo Guillermo Vaquero Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias
  • Edgardo Cesar Verna Universidad Nacional de La Pampa
  • Andrea Cristofolini Area de Microscopía Electronica Departamento Río Cuarto, Provincia de Córdoba, Argentina
  • Cecilia Ines Merkis Universidad de Rio Cuarto, Cordoba

DOI:

https://doi.org/10.19137/cienvet-201921102

Palabras clave:

Wnt, matriz ósea desmineralizada, hueso, conejo, inmunomarcación

Resumen

Si bien la expresión de Wnt y sus isoformas se conocen ampliamente en la esqueletogénesis embrionaria, poco se sabe del rol que desempeña, en particular la isoforma Wnt3, en la reparación de defectos óseos ortopédicos. Se emplearon 30 conejos a los que se les practicó a
cada uno, un defecto óseo en sus miembros torácicos , el que se procedió a rellenar con matriz ósea desmineralizada (MOD). Los conejos fueron sacrificados a los 7, 15, 21, 30, 60 y 150 días post-tratamiento para realizar inmunodetección de Wnt3 en los sitios de reparación. La inmunodeterminación se efectuó mediante densidad óptica (DO) y densidad óptica integrada (DOI). Las DO y DOI se analizaron mediante ANOVA y Test LSD de Fisher. La proteína Wnt3 se inmunodetectó en células mesenquimáticas, en los sitios donde se produjo la condrogénesis y en células osteoprogenitoras, preosteoblastos y osteoblastos. La DO tuvo variaciones significativas (p<0,05) a los 7,15, 60 y 150 días post-tratamiento. El mismo análisis estadístico para DOI señaló que hubo diferencias estadísticamente significativas (p<0,05) a los 30 días respecto a los 60 y 150 días. La evidencia expuesta mostró los sitios histológicos como así también la cronología de expresión de Wnt3 en la reparación de defectos óseos ortopédicos tratados con matriz ósea desmineralizada.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Santiago Andres Audisio, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Profesor Adjunto Cátedra Técnica y Patología Quirúrgica. Especialista en Ciencias Clínicas (FAV-UNRC). Doctor en Ciencia, Tecnología e Innovación Agropecuaria (FAV-UNRC). Área de conocimiento de las afecciones de osteoarticulares y cirugía ortopédica y traumatológica veterinaria.

Pablo Guillermo Vaquero, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Jefe de Trabajos Prácticos Cátedra Técnica y Patología Quirúrgica. Especialista en Educación en Cs Veterinarias (FCV-UNLPam), doctorando en Ciencias Veterinarias (FCV-UNLP). Área de conocimiento de las afecciones osteoarticulares y cirugía ortopédica y traumatológica veterinaria.

Andrea Cristofolini, Area de Microscopía Electronica Departamento Río Cuarto, Provincia de Córdoba, Argentina

DOCTOR EN CIENCIAS BIOLOGICAS
MICROBIOLOGA
TECNICA DE LABORATORIO

Cecilia Ines Merkis, Universidad de Rio Cuarto, Cordoba

Microbiologa en Universidad Nacional de Río Cuarto

Citas

Urist, M.R. Bone formation by autoinduction. Science. 1965; 150: 893-899.

Ganesh, T.N. Comparative studies on bone grafting for radial fracture using autogeneic cancellous bone, allogeneic demineralized bone matrix and xenogeneic demineralized bone matrix for better osteogenesis in canines. Indian Journal of Veterinary Surgery. 1992; 14:1-48.

Kumar, R.V.S.; Ramakrishna, O. Femoral fracture repair by demineralized bone matrix combinations in canines. Indian Journal of Animal Sciences. 2001; 71:749-751.

Hoffer, M.J.; Griffon, D.J.; Schaeffer, D.J.; Johnson, A.L.; Thomas, MW. Clinical applications of demineralized bone matrix: a retrospective and case-matched study of seventy- five dogs. Veterinary Surgery. 2008; 37:639-647.

da Silva, S.W.G.; de Castro, R.P.; deViana, G.A.; dos Santos, F.R.; de Moraes, R.S.; do Oriente, V.N. Estenose de pelve em felino tratado com anel de matriz óssea desmineralizada (MOD) - relato de caso. Clínica Veterinária. 2012; 17:46-50.

Colnot, C.; Romero, D.M.; Huang, S.; Helms, J. Mechanism of action of demineralized bone matrix in the repair of cortical bone defects. Clinical Orthopaedic Related Research. 2005; 435:69-78.

Eppley, B.L.; Pietrzak, W.S.; Blanton, M.W. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. Journal of Craniofacial Surgery. 2005; 16:981-989.

Gavin, B.J.; McMahon, J.A.; McMahon, A.P. Expression of multiple novel Wnt-1/

int-1-related genes during fetal and adult mouse development. Genes Development. 1990; 4:2319–2332.

Cadigan, K.M.; Nusse, R. Wnt signaling: a common theme in animal development.

Genes Development. 1997; 11:3286-3305.

Miller, J.R. The Wnts. Genome biology. 2002; 3:3001-3015.

Luo, Q.; Kang, Q.; Si, W; Jiang, W.; Park, J.K.; Peng, Y.; Li, X.; Luu, H.H.; Luo, J.; Montag, A.G.; Haydon, R.C.; He, T.C. Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. Journal Biology Chemistry. 2004; 279:55958-55968.

Rodda, S.J.; McMahon, A.P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006; 133:3231–3244.

Hartmann, C. A Wnt canon orchestrating osteoblastogenesis. Trends in Cell Biology. 2006; 16:151–158.

He, X.; Semenov, M.; Tamai, K.; Zheg, X. LDL receptor related proteins 5 and 6 in Wnt/b-catenin signaling: arrows point the way. Development. 2004; 131:1663–1677.

Kelly, O.G.; Pinson, K.I.; Skarnes, W.C. The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development. 2004; 131:2803–2815.

Huang, H.; He, X. Wnt/beta-catenin signaling: new (and old) players and new insights. Current Opinion in Cell Biology. 2008; 20:119-125.

Sugimura, R.; Li, L. Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Research. Part C. Embryo Today. 2010; 90:243-256.

Audisio, S.A.; Vaquero, P.G.; Torres, P.A.; Verna, E.C.; Ocampo, L.N.: Ratusnu, V.; Cristofolini, A.L.; Merkis, C.I. Obtención, caracterización y almacenamiento de matriz ósea desmineralizada. Revista de Medicina Veterinaria. 2014; 95:27-34.

Schmitz, J.P.; Hollinger, J.O. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clinical Orthopaedic Related Research. 1986; 205:299-308.

Hollinger, J.O.; Kleinschmidt, J.C. The critical size defect as an experimental model to test bone repair methods. Journal of Craniofacial Surgery.1990; 1:60-68.

Vasconcellos, A.; Cisternas, C.; Paredes, M. Estudio inmunohistoquímico comparativo del receptor de estrógeno en tejido endometrial de ovejas razas Texel y Araucana. Int. J. Morphol.2014; 32:1120-1124.

Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat versión 2010 Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Zhong, N.; Gersch, R.P.; Hadjiargyrou, M. Wnt signaling activation during bone

regeneration and the role of dishevelled. in chondrocyte proliferation and

differentiation. Bone.2006; 39:5–16.

Chen, Y.; Whetstone, H.C.; Youn, A.; Nadesan, P.; Chow, E.C.Y.; Lin, A.C.; Alman, B.A. β-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. Journal Biological Chemistry. 2007; 282:526-533.

Monroe, D.G.; McGee-Lawrence, M.E.; Oursler, M.J.; Westendorf, J.J. Update on Wnt signaling in bone cell biology and bone disease. Gene. 2011; 492:1-18.

Tu, X.; Joeng, K.S.; Nakayama, K.I.; Nakayama, K.; Rajagopal, J.; Carroll, T.J.; McMahon, A.P.; Long, F. Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation. Developmental Cell.2007; 12:113-127.

Fischer, L.; Boland, G.; Tuan, R.S. Wnt-3A Enhances bone morphogenetic protein- 2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. The Journal of Biological Chemistry. 2002; 277:30870–30878.

Rawadi, G.; Vayssière, B.; Dunn, F.; Baron, R.; Roman-Roman, S. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. Journal of Bone and Mineral Research. 2003; 18:1842–1853.

Fujita, T.; Azuma, Y.; Fukuyama, R.; Hattori, Y.; Yoshida, C.; Koida, M.; Ogita, K.; Komori, T. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. Journal of Cell Biolgy. 2004; 166:85–95.

Phimphilai, M.; Zhao, Z.; Boules, H.; Roca, H.; Franceschi, R.T. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone and Mineral Research. 2006; 21:637–646.

Nelson, W.J. Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochemistral Society Transactions. 2008; 36:149-155.

Dong, Y.F.; Soung do, Y.; Schwarz, E.M.; O’Keefe, R.J.; Drissi, H. Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. Journal of Cellular Physiology. 2006; 208:77-86.

Marsell, R.; Einhorn, T.A. The biology of fracture healing. Injury. 2011; 42:551-555.

Bigham-Sadegh, A.; Oryan, A. Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. Internal Wound Journal. 2015; 12:238–247.

Gibson, G.J.; Kohler,W.J.; Schaffler, M.B. Chondrocyte apoptosis in endochondral ossification of chick sterna. Developmental Dynamics. 1995; 203.468-476..

Scammell, B.E.; Roach, H.I. A new role for the chondrocyte in fracture repair: Endochondral ossification includes direct bone formation by former chondrocytes. Journal of Bone and Mineral Research. 1996; 11:737–745

Hill, T.P.; Spater, D.; Taketo, M.M.; Birchmeier, W.; Hartmann, C. Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell. 2005; 8:727–738.

Zhou, X.; von der Mark, K.; Henry, S.; Norton, W.; Adams, H.; de Crombrugghe, B. 2014. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 10, e1004820.

Moon, R.T.; Brown, J.D.; Torres, M. WNTs modulate cell fate and behavior during vertebrate development. Trends in Genetics. 1997; 13:157–162.

Hartmann C.; Tabin C.J. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development. 2000; 127:3141–3159.

Church, V.; Nohno, T.; Linker, C.; Marcelle, C.; Francis-West, P. Wnt regulation of chondrocyte differentiation. Journal of Cell Science. 2002; 115:4809–4818.

Descargas

Publicado

2019-06-24

Cómo citar

Audisio, S. A., Vaquero, P. G., Verna, E. C., Cristofolini, A., & Merkis, C. I. (2019). Inmunodetección de Wingless int-3 (Wnt3) en la reparación de defectos óseos ortopédicos en conejos tratados con matriz ósea desmineralizada / Wingless int-3 (Wnt3) Immunodetection in the repair of orthopedic bone defects in rabbits treated with. Ciencia Veterinaria, 21(1), 27–42. https://doi.org/10.19137/cienvet-201921102

Número

Sección

Artículos de Investigación