Contrasting levels of fructose and urea added to an annual ryegrass based diet: effects on microbial protein synthesis, nutrient digestibility and fermentation parameters in continuous culture fermenters

  • Mariano Alende Instituto Nacional de Tecnología Agropecuaria INTA, 6326 Anguil, La Pampa, Argentina Clemson University, Department of Animal and Veterinary Sciences, Clemson, SC 29634
  • Gustavo J. Lascano Clemson University, Department of Animal and Veterinary Sciences, Clemson, SC 29634
  • Thomas C. Jenkins Clemson University, Department of Animal and Veterinary Sciences, Clemson, SC 29634
  • John G. Andrae Clemson University, Department of Animal and Veterinary Sciences, Clemson, SC 29634

DOI:

https://doi.org/10.19137/semiarida.2019(01).33-41

Keywords:

Raigrás anual, fermentadores de flujo continuo, proteína bruta, síntesis de proteína microbiana, hidratos de carbono solubles

Abstract

El objetivo de este experimento fue evaluar los efectos de la adición de fructosa cristalina y urea a una dieta basada en raigrás anual sobre la síntesis de proteína microbiana, la fermentación y la digestibilidad de los nutrientes, usando fermentadores de flujo continuo. Se usaron seis fermentadores de flujo continuo en un arreglo factorial 3x2, con tres niveles de hidratos de carbono solubles (WSC) obtenidos por la adición de fructosa cristalina (21, 24 y 27 g.100 g MS1; LWSC, MWSC y HWSC, respectivamente) y dos niveles de proteína bruta (CP) obtenidos por la adición de urea (14,6 y 18,6 g.100 g MS1, LCP y HCP, respectivamente). Se corrieron sucesivamente cuatro períodos de 10d (7d para adaptación, 3d para muestreo). La síntesis de proteína microbiana se estimó por la relación purinas: N. Hubo una interacción significativa entre niveles de WSC y CP para síntesis de proteína microbiana (P<0,001). El nivel de WSC no afectó el pH, la concentración de amonio ni la concentración de ácidos grasos volátiles (VFA). Niveles más altos de CP aumentaron la proporción de ácido acético y tendieron a aumentar la relación acético propiónico, mientras que el nivel de WSC no afectó las proporciones de VFA. Los tratamientos no afectaron la digestibilidad de los nutrientes. Concluimos que la adición de fructosa cristalina a dietas basadas en raigrás anual aumentó la síntesis de proteína microbiana a los niveles más altos de CP en la dieta.

Downloads

Download data is not yet available.

References

AOAC International (2000). Official Methods of Analysis of AOAC International. AOAC International, Gaithersburg, MA, USA.

Berthiaume, R., Benchaar, C., Chaves, A. V., Tremblay, G. F., Castonguay, Y., Bertrand, A., Bélanger, G., Michaud, R., Lafrenière, C., McAllister, T. A.,& Brito, A. F. (2010). Effects of nonstructural carbohydrate concentration in alfalfa on fermentation and microbial protein synthesis in continuous culture. Journal Dairy Science, 93, 693-­700.

Calsamiglia, S., Cardozo, P. W., Ferret, A., & Bach, A. (2008). Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. Journal of Animal Science, 86, 702-­711.

Chaney, A. L. & Marbach, E. P. (1962). Modified reagents for determination of urea and ammonia. Clinical Chemistry, 8, 130­-132.

Clark, J. H., Klusmeyer, T. H., & Cameron, M. R. (1992). Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. Journal of Dairy Science, 75, 2304­-2323.

Cosgrove, G., Burke, J., Death, A., Hickey, M., Pacheco, D., & Lane, G. (2007). Ryegrasses with increased water soluble carbohydrate: Evaluating the potential for grazing dairy cows in New Zealand. Proceedings of the New Zealand Grassland Association , 69, 179­-185.

Da Silva, M. S., Tremblay, G. F., Bélanger, G., Lajeunesse, J., Papadopoulos, Y. A., Fillmore, F. A., & Jobim, C. C. (2014). Forage energy to protein ratio of several legume­grass complex mixtures. Animal Feed Science and Technology, 188, 17­-27.

Dijkstra, J., Ellis, J. L., Kebreab, J. L., Strathe, A. B., López, S., France, J., & Bannink, A. (2012). Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology, 172, 22­-33.

DuBois, M., Gilles, K. A., Hamilton, J. D., Rebers, p., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-­356.

Edwards, G. R., Parsons, A., Rasmussen, S., & Bryant, R. H. (2007). High sugar ryegrasses for livestock systems in New Zealand. Proceedings of the New Zealand Grassland Association, 69, 161-­171.

Goering, H. K., & Van Soest, P. J. (1970). Forage Fiber Analysis. USDA Agricultural Research Service. Handbook number 379. U.S. Dept. of Agriculture. Superintendent of Documents. Washington DC: US Government Printing Office.

Gregorini, P., Eirin, M., Refi, R., Ursino, M., Ansin, O., & Gunter, S. (2006). Timing of herbage allocation in strip grazing: Effects on grazing pattern and performance of beef heifers. Journal of Animal Science, 84, 1943-­1950.

Hall, M. B., & Huntington, G. B. (2008). Nutrient synchrony: Sound in theory, elusive in practice. Journal of Animal Science, 86, E287­E292.

Hall, M. B. (2009). Analysis of starch, including maltooligosaccharides, in animal feeds: a comparison of methods and a recommended method for AOAC collaborative study. Journal Association of Official Analytical Chemists, 92, 42­-49.

Hall, M. B. (2013). Efficacy of reducing sugar and phenol–sulfuric acid assays for analysis of soluble carbohydrates in feedstuffs. Animal Feed Science and Technology, 185, 94­-100.

Henning, P. H., Steyn, D. G., & Meissner, H. H. (1991). The effect of energy and nitrogen supply pattern on rumen bacterial growth in vitro. Animal Production, 53, 165­-175.

Hoover, W. H., & S. R. Stokes. 1991. Balancing carbohydrates and proteins for optimum rumen microbial yield. Dairy Science Journal, 74, 3630­-3644.

Johnson, R.R. 1976. Influence of carbohydrate solubility on non­protein nitrogen utilization in the ruminant. Journal of Animal Science, 43, 184-­191.

Kim, K.H., Choung, J.J., y Chamberlain, D. G. (1999). Effects of varying the degree of synchrony of energy and nitrogen release in the rumen on the synthesis of microbial protein in lactating dairy cows consuming a diet of grass silage and a cereal­based concentrate. Journal of the Science of Food and Agriculture, 79, 1441-­1447.

Kingston­Smith, A. H., y Theodorou, M. K. (2000). Postingestion metabolism of fresh forage. New Phytologist, 148, 37­-55.

Krishnamoorthy, U., Muscato, T. V., Sniffen, C. J., y Van Soest, P. J. (1982). Nitrogen fractions in selected feedstuffs. Journal of Dairy Science, 65, 217­-225.

Krishnamoorthy, U., Sniffen, C. J., Stern, M. D., y Van Soest, P. J. (1983). Evaluation of a mathematical model of rumen digestion and an in vitro simulation of rumen proteolysis to estimate the rumen undegraded nitrogen content of feedstuffs. British Journal of Nutrition, 50, 555­-568.

Lee, M. R. F., Harris, L. J., Moorby, J. M., Humphreys, M. O., Theodorou, M. K., MacRae, J. C., y Scollan, N. D. (2002). Rumen metabolism and nitrogen flow to the small intestine in steers offered Lolium perenne containing different levels of water­soluble carbohydrate. Journal of Animal Science, 74, 587­-596.

Mansfield, H. R., Endres, M. I., y Stern, M. D. (1994). Influence of non­fibrous carbohydrate and degradable intake protein on fermentation by ruminal microorganisms in continuous culture. Journal of Animal Science, 72, 2464­-2474.

Mayland, H., Mertens, D., Taylor, T., Burns, J., Fisher, D., Gregorini, P., Ciavarella, T., Smith, K., Shewmaker, G., & Griggs, T. ( 2005). Diurnal changes in forage quality and their effects on animal preference, intake, and performance. California Alfalfa and Forage Symp., 35th. Visalia, California.

Merry, R. J., Lee, M. R. F., Davies, D. R., Dewhurst, R. J., Moorby, J. M., Scollan, N. D. y Theodorou, M. K. (2006). Effects of high­sugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 1. In vitro and in vivo studies of nitrogen utilization. Journal of Animal Science, 84, 3049­-3060.

Miller, L. A., Moorby, J. M., Davies, D. R., Humphreys, M. O., Scollan, N. D., MacRae, J. C., y Theodorou, M. K. (2001). Increased concentration of water­soluble carbohydrate in perennial ryegrass (Lolium perenne L.): milk production from late­lactation dairy cows. Grass Forage Science, 56, 383-­394.

Moorby, J. M., Evans, R. T., Scollan, N. D., MacRae, J. C., y Theodorou, M. K. (2006). Increased concentration of water soluble carbohydrate in perennial ryegrass (Lolium perenne L.): evaluation in dairy cows in early lactation. Grass Forage Science, 61, 52-­59.

Mouriño, F., R. Akkarawongsa, & P.J. Weimer. 2001. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. Journal of Dairy Science, 84, 848-­859.

Parsons, A., Rasmussen, S., Xue, H., Newman, j., Anderson, C., y Cosgrove, G. (2004). Some ‘high sugar grasses’ don’t like it hot. Proceedings of the New Zealand Grassland Association, 66, 265­-271.

Rotger, A., Ferret, A., Calsamiglia S., & Manteca, X. (2006). Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism in vivo and in vitro with high concentrate beef cattle diets. Journal of Animal Science, 84, 1188­-1196.

Russell, J. B., & Wilson, D. B. (1996). Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH?. Journal of Dairy Science, 79, 1503­-1509.

Satter, L. D. & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. British Journal of Nutrition, 32, 199­-208.

Slyter, L. L., Bryant, M. P. & Wolin, M. J. (1966). Effect of pH on population and fermentation in a continuously cultured rumen ecosystem. Journal of Applied Microbiology, 14, 573­-578.

Stern, M. D., Hoover, H., Sniffen, C. J., Crooker, B. A. & Knowlton, P. H. (1978). Effects of nonstructural carbohydrate, urea and soluble protein levels on microbial protein synthesis in continuous culture of rumen contents. Journal of Animal Science, 47, 944­ -956.

Teather, R. M., & Sauer, F. D. (1988). A naturally compartmented rumen simulation system for the continuous culture of rumen bacteria and protozoa. Journal of Dairy Science, 71, 666­-673.

Van Soest, P. V., Robertson,J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and non­starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-­3597.

Wanapat, M., Polyorach, S., Boonnop, K., Mapato, C., & Cherdthong, A. (2009). Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livestock Science, 125, 238-­243.

Zinn, R. A. & Owens, F.vN. (1986). A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Canadian Journal of Animal Science, 66, 157­-166.

Published

2019-10-02

How to Cite

Alende, M., Lascano, G. J., Jenkins, T. C., & Andrae, J. G. (2019). Contrasting levels of fructose and urea added to an annual ryegrass based diet: effects on microbial protein synthesis, nutrient digestibility and fermentation parameters in continuous culture fermenters. Semiárida, 29(1), 33–41. https://doi.org/10.19137/semiarida.2019(01).33-41

Issue

Section

Artículos Científicos y Técnicos