Growth and survival of Grindelia covasii A. Bartoli & Tortosa seedlings under water stress

  • Alicia Graciela Kin Universidad Nacional de La Pampa, Facultad de Agronomía
  • Mónica Beatriz Mazzola Universidad Nacional de La Pampa, Facultad de Ciencias Exactas y Naturales
  • María Marta Rodríguez Universidad Nacional de La Pampa, Facultad de Ciencias Exactas y Naturales
  • Viviana Jorgelina Cenizo Universidad Nacional de La Pampa, Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa, Facultad de Agronomía

Keywords:

seedling recruitment, endemism, water stress, Lihué Calel

Abstract

Grindelia covasii is an endemic species of the Lihue Calel Sierras. In this semiarid enviroment soil water availability is a limiting factor for seedling establishment. This greenhouse experiment evaluated the growth and survival of juvenile G. covasii plants by exposing four plant sizes (G=large, M=medium, and P=small plant sizes) to three irrigation levels, simulating high (Rf), moderate (R7) and low soil water availability (R14). Plant growth and physiological measurements were taken during the experiment. Results showed that growth parameters were affected by increasing water stress. Leaf senescence was high under severe water limitation (R14) with larger individuals showing highest drought tolerance. No changes were observed in resource allocation from aboveground parts to roots in response to water stress. Survival was also affected by reduced water availability, with smaller plants being the most affected. The lower tolerance of juvenile stages of G. covasii to severe water stress observed in this experiment, suggest that this species would require moist conditions for successful seedling establishment. This study provides useful information regarding G. covasii recruitment.

Downloads

Download data is not yet available.

References

Bartoli A. & R.D. Tortosa. 1999. Revisión de las especies sudamericanas de Grindelia (Asteraceae, Astereae). Kurtziana 27: 327­-359.

Bartoli A. & R.D. Tortosa. 2003. Architecture of the genus Grindelia (Asteraceae: Astereae). Flora 198: 106-­111.

Bertiller M.B., P. Zaixso, M. Del P. Irisarri & E.R. Brevedan. 1996. The establishment of Festuca pallensces in arid grasslands in Patagonia (Argentine): the effect of soil water stress. J. Arid Environ. 32: 161-­171.

Cantero J.J., J.A. Sfragulla, C. Núñez, A.A. Bonalumi, J. Mulko, A. Amuchastegui, F. Chiarini, G.E. Barboza & L. Ariza Espinar. 2011. Flora de los afloramientos de mármoles y serpentinitas de las Sierras de Córdoba (Argentina). Kurtziana 36: 11­-45.

Casagrande G.A., G.T. Vergara, L. Belmonte, M.E. Fuentes, J.P. Arnaiz & J.A. Forte Lay. 2014. Áreas de riesgo agroclimático para cuatro rotaciones de cultivos de la región oriental agropecuaria de La Pampa (Argentina). Semiárida 24: 31-­38.

Castro M., S.A., R. Fuentes & B.N. Timmermann. 1995. Germination responses and resin production of Grindelia glutinosa and G. tarapacana from the Atacama Desert. J. Arid Environ. 29: 25-­32.

Cella Pizarro L. & A.J. Bisigato. 2010. Allocation of biomass and photoassimilates in juvenile plants of six Patagonian species in response to five water supply regimes. Ann. Bot. 106: 297­-307.

Di Rienzo J.A., M.G. Balzarini, L. Gonzalez, F. Casanoves, M. Tablada & C.W. Robledo. 2014. InfoStat versión 2014. Grupo InfoStat. FCA­UNC. Argentina. http://www.infostat.com.ar.

Fay P.A. & M.J. Schultz. 2009. Germination, survival, and growth of grass and forb seedlings: Effects of soil moisture variability. Acta Oecol. 35: 679-­684.

Fenner M. 1987. Seedlings. New Phytol. 106: 35­-47.

Fernández M.E., C.B. Passera & M.A. Cony. 2016. Sapling growth, water status and survival of two native shrubs from the Monte Desert, Mendoza, Argentina, under different preconditioning treatments. Rev. FCA UNCUYO 48: 33­-47.

Funes G. & M. Cabido. 2008. Relaciones florísticas y características regenerativas en Apurimacia dolichocarpa (Griseb.) Burkart, especie endémica del centro de Argentina. Phytocoenologia 38: 107-­115

Harper J.L. 1977. The seed­bank. En: Population biology of plants (J.L. Harper Ed.). Academic Press, London. pp. 83­-110.

INTA, Gobierno de La Pampa & Facultad de Agronomía, Universidad Nacional de La Pampa (eds). 1980. Inventario Integrado de los Recursos Naturales de La Pampa, Bs As. 493 p.

Kin A., A. Sosa & M. Mazzola. 2004. Efecto del sombreo y del contenido hídrico del suelo sobre el establecimiento de Piptochaetium napostaense. En: Actas XXV Reunión Argentina de Fisiología Vegetal. Santa Rosa, La Pampa. p. 261.

Kin A., M. Mazzola & G. Tamborini. 2005. El Parque Nacional Lihue Calel. En: Temas Pampeanos: Recursos hídricos, medio ambiente e historia. (Fundación Chadileuvu Ed.) pp. 89-­109.

Kin A.G., M.B. Mazzola & V.J. Cenizo. 2015. Seed germination and seedling growth of the geophytic Pterocactus tuberosus (Cactaceae). J. Torrey Bot. Soc. 142: 283-­291. http://dx.doi.org/10.3159/TORREY-D-14-00056.1

Lambers H., F.S. Chapin III & T.L. Pons. 2008. Plant physiological ecology. 2nd ed. Springer. New York. 604 p.

Lesica P., R. Yurkewycz & E.E. Crone. 2006. Rare plants are common where you find them. Am. J. Bot. 93: 454­-459.

López Lauenstein D., M.E. Fernández & A. Verga. 2012. Respuesta diferenciada a la sequía de plantas jóvenes de Prosopis chilensis, P. flexuosa y sus híbridos interespecíficos: implicancias para la reforestación en zonas áridas. Ecol. Austral 22: 43­-52.

Markesteijn L. & L. Poorter. 2009. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought ­ and shade­tolerance. J. Ecol. 97: 311-­325.

Matías L., L. Gómez ­Aparicio, R. Zamora & J. Castro. 2011. Effects of resource availability on plant recruitment at the community level in a Mediterranean mountain ecosystem. Perspect. Plant Ecol. Evol. Syst. 13: 277­-285.

Mazzola M.B., A.G. Kin, E.F. Morici, F.J. Babinec & G. Tamborini. 2008. Efecto del gradiente altitudinal sobre la vegetación de las sierras de Lihué Calel (La Pampa, Argentina). Bol. Soc. Argent. Bot. 43: 103­-119.

Navarro L. & J. Guitián, 2003. Seed germination and seedling survival of two threatened endemic species of the northwest Iberian peninsula. Biol. Conserv. 109: 313­-320.

Negreiros D., G.W. Fernandes, F.A.O. Silveira & C. Chalub. 2009. Seedling growth and biomass allocation of endemic and threatened shrubs of rupestrian fields. Acta Oecol. 35: 301-­310.

Padilla F.M. & F.I. Pugnaire. 2007. Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct. Ecol. 21: 489­-495.

Padilla F.M. 2008. Factores limitantes y estrategias de establecimiento de plantas leñosas en ambientes semiáridos. Implicaciones para la restauración. Ecosistemas 17: 155­-159.

Padilla F.M., J. de Dios Miranda & F.I. Pugnaire. 2007. Early root growth plasticity in seedlings of three Mediterranean woody species. Plant Soil 296: 103­-113.

Poorter H. & O. Nagel. 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2 , nutrients and water: a quantitative review. Aust. J. Plant Physiol. 27: 595-­607.

Song B., J. Stöcklin, Y.­Q. Gao, Z.­Q. Zhang, Y. Yang, Z.­M. Li & H. Sun. 2013. Habitat­specific responses of seed germination and seedling establishment to soil water condition in two Rheum species in the high Sino­ Himalayas. Ecol. Res. 28: 643­-651.

Torres Ribeiro K., B.M. Opazo Medina & F. Rubio Scarano. 2007. Species composition and biogeographic relations of the rock outcrop flora on the high plateau of Itatiaia, SE­Brazil. Rev. Brasil. Bot. 30: 623­-639.

Troiani H. & P. Steibel. 1999. Sinopsis de las compuestas (Compositae Giseke) de la Provincia de La Pampa. Rev. Fac. Agronomía ­ UNLPam. 10: 1-­86. https://cerac.unlpam.edu.ar/index.php/semiarida/issue/view/369

Venier P., M. Cabido, A. Mangeaud & G. Funes. 2013. Crecimiento y supervivencia de plántulas de cinco especies de Acacia (Fabaceae), que coexisten en bosques secos neotropicales de Argentina, en distintas condiciones de disponibilidad de luz y agua. Rev. Biol. Trop. 61: 501-­514.

Villagra P.E., C. Giordano, J.A. Álvarez, J.B. Cavagnaro, A. Guevara, C. Sartor, C.B. Passera & S. Greco. 2011. Ser planta en el desierto: estrategias de uso de agua y resistencia al estrés hídrico en el Monte Central de Argentina. Ecol. Austral 21: 29-­42.

Woods S.R., S.R. Archer & S. Schwinning. 2011. Early taproot development of a xeric shrub (Larrea tridentata) is optimized within a narrow range of soil moisture. Plant Ecol. 212: 507­-517.

Xu B.­C., W.­Z. Xu, J. Huang, L. Shan & F.­M. Li. 2011. Biomass allocation, relative competitive ability and water use efficiency of two dominant species in semiarid Loess Plateau under water stress. Plant Sci. 181: 644-­651.

Zavala J.A. & D.A. Ravetta. 2001. Allocation of photoassimilates to biomass, resin and carbohydrates in Grindelia chiloensis as affected by light intensity. Field Crops Res. 69: 143-­149.

Zhang Y, Y. Li & J.­B. Xie. 2016. Fixed allocation patterns, rather than plasticity, benefit recruitment and recovery from drought in seedlings of a desert shrub. AoB PLANTS8:plw020.

Zollinger N., R. Kjelgren, T. Cerny­Koenig, K. Kopp & R. Koenig. 2006. Drought responses of six ornamental herbaceous perennials. Sci. Hort. 109: 267­-274.

Published

2018-11-11

How to Cite

Kin, A. G., Mazzola, M. B., Rodríguez, M. M., & Cenizo, V. J. (2018). Growth and survival of Grindelia covasii A. Bartoli & Tortosa seedlings under water stress. Semiárida, 28(1). Retrieved from https://ojs.unlpam.edu.ar/ojs/index.php/semiarida/article/view/3498

Issue

Section

Artículos Científicos y Técnicos