Impact of ENSO (el Niño southern oscillation) and sowing date on soil water storage evolution in corn

  • Mariano Javier Mendez Universidad Nacional de La Pampa, Facultad de Agronomía
  • Sergio Bongianino Universidad Nacional de La Pampa, Facultad de Agronomía
  • Guillermo Casagrande Universidad Nacional de La Pampa, Facultad de Agronomía
  • Graciela Vergara Universidad Nacional de La Pampa, Facultad de Agronomía

DOI:

https://doi.org/10.19137/semiarida.2018(01).11­22

Keywords:

MEI, crop management, water balance, ENSO

Abstract

Agricultural production in the central semiarid region of Argentina (CSRA) is strongly limited by the availability of water, which is associated with the occurrence of El Niño southern Oscillation (ENSO).The aim of the work was to analyze the evolution of water stored in the soil (WSS) in different phenological stages of the corn (Zea mays L.) for early spring (ESS) and late (LSS) sowings under different ENSO conditions. To achieve the objective, daily WSS was calculated throughout the maize crop cycle in ESS (1 October) and LSS (1 December) for the period between 19/50/2015 using the Agroagua software version 4.1. The results showed that LSS had higher WSS levels during the critical period of the crop (15 days before and 15 days after flowering) and 30 days after, than in ESS. In LSS the highest levels of WSS during the critical period of the crop were reached in La Niña years, while in ESS they were reached in El Niño years. The highest levels of WSS would be associated with higher crop productivity. However, to confirm the latter, field trials or simulations with programs to estimate the yield should be conducted.

Downloads

Download data is not yet available.

References

Andrade F., A. Cirilo, S. Uhart & M. Otegui. 1996. Ecofisiología del Cultivo de Maíz. Editorial La Barrosa, Dekalb Press. INTA, FCA UNMP. 292 p.

Alvarez MS., CS. Vera, GN. Kiladis, B. Liebmann. 2015. Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America. Climate Dynam. 46: 245­-262.

Aslam M., M.A. Maqbool & R. Cengiz. 2015. Drought Stress in Maize (Zea mays L.) Effects, Resistance Mechanisms, Global Achievements and Biological Strategies for Improvement. SpringerBriefs in Agriculture https://www.doi.org/10.1007/978­3­319­25442­5

Anapallia S.S., L.R. Ahuja, P.H. Gowda, L. Ma, G. Marek, S.R. Evett & T.A. Howelle. 2016. Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters. Agric. Water Manag. 177: 274­-283.

Barros V.R. & G.E. Silvestri. 2002. The relation between sea surface temperature at the subtropical South­ Central Pacific and precipitation in Southeastern South America. J. climate 15: 251-­267.

Barros V., L. Chamorro, G. Coronel & J. Báez. 2004: The major discharge events in the Paraguay River: Magnitudes, source regions, and climate forcings. J. Hydrometeorol. 5: 1161­-1170.

Bianchi A.R. & S.A.C. Cravero 2010. Atlas climático digital de la república Argentina. Ediciones Instituto Nacional de Tecnología Agropecuaria. Centro regional Salta­ Jujuy. http://inta.gob.ar/documentos/atlas­climatico­digital­de­larepublica­argentina

Chan S.C., S.K. Behera & T. Yamagata 2008. Indian Ocean Dipole influence on South American rainfall. Geophys. Res. Lett. 35: L14S12.

Classen M.M. & R.H. Shaw. 1970. Water deficit effect on corn. II. Grain components. Agron. J. 62: 652.

Di Rienzo J.A., M. Balzarini, F. Casanoves, L. González, M. Tablada & C.W. Robledo. 2002. Infostat/Professional version 1.1.

Doorenbos J. & A.H. Kassam. 1979. Yield response to water. FAO irrigation and drainage. 33: 101­-104.

INTA ­Provincia de La Pampa­ Universidad Nacional de La Pampa. 1980. Inventario de los recursos Naturales de la provincia de la Pampa. Segunda ed. 495 p.

FAO. 2014. Respuesta del rendimiento de los cultivos al agua. E­ISBN 978­92­5­308564­4.

Forte Lay J.A. & A. Troha. 1994. Estimación diaria del balance hídrico para el estudio de los rendimientos en maíz en Pergamino. GEOACTA 17(1): 69:78.

Forte Lay J.A., J.L. Aiello & J. Kuba. 1996. Software AGROAGUA versión 4.1. Resumen publicado en la revista Agrosoft’95. Argentina. 4 p.

Gardiol J., I. Irigoyen & A. Della Maggiora. 1996. Evapotranspiración máxima del cultivo de maíz. Actas VII Congreso Argentino de Meteorología y VII Congreso Latinoamericano e Ibérico de meteorología. Buenos Aires. Argentina. Actas 1: 81-­82.

Grimm A.M. 2011. Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch. Environ. Res. Risk Assess. 25: 537­-554.

Grimm A.M. 2004: How do La Niña events disturb the summer monsoon system in Brazil? Climate Dyn. 22: 123­138.

Grimm A., V. Barros & M. Doyle. 2000. Climate variability in Southerm South America associated with El Niño and La Niña. J. Climate 13: 35-­58.

Hsiao T.C., P. Steduto & E. Fereres. 2007. A systematic and quantitative approach to improve water use efficiency in agriculture. Irrig. Sci. 25: 209-­231.

Jirak I., W.R. Cotton & L.R. McAnelly. 2003: Satellite and Radar Survey of Mesoscale Convective Systems Development. Mon. Weather Rev.131: 361­-382.

Lorenz E. 1963: Deterministic non­periodic flow. J. Atmos. Sci. 20: 130­-141.

Iizumi T., J.J. Luo, A.J. Challinor, G. Sakurai, M. Yokozawa, H. Sakuma, M.E Brown & T. Yamagata. 2014. Impacts of el niño southern oscillation on the global yields of major crops. Nat. Commun. 5.

Meinke H., R. Nelson, P. Kokic, R. Stone, R. Selvaraju & W. Baethgen. 2006. Actionable knowledge: from analysis to synthesis. Clim. Res. 33: 101-­110.

McNider R.T., C. Handyside, K. Doty, W.L. Ellenburg, J.F. Cruise, J.R. Christy, D. Moss, V. Sharda, G. Hoogenboom & P. Caldwell. 2015. An integrated cropand hydrologic modeling system to estimate hydrologic

impacts of crop irrigation demands. Environ. Modell. Softw. 72: 341-­355.

Musick J.T. & D.A. Dusek. 1980. Irrigated corn yield response to water. Trans. Am. Soc. Agric. Eng. 23: 92­98, 103.

NOAA. 2015. National Oceanic and Atmospheric Administration. http://www.esrl.noaa.gov/psd/enso/mei/rank.html

Murphy G.M. 2008. Atlas agroclimático de la Argentina. Facultad de Agronomía Universidad Nacional de Buenos Aires. 130 p.

Okada M., T. Iizumi, G. Sakurai, N. Hanasaki, T. Sakai, T. Okamoto, M. & Yokozawa. 2015. Modeling irrigation­based climate change adaptation in agriculture: model development and evaluation in Northeast China. J. Adv. Model. EarthSyst. 7: 1409­-1424 http://dx.doi.org/10.1002/2014MS000402

Penman H.L. 1948. Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London (A) 193: 17- 21.

Penalba, O.C. & J.A. Rivera. 2016. Precipitation response to El Niño/La Niña events in Southern South America emphasis in regional drought occurrences.

Registro Provincial Agropecuario [REPAGRO], 2012. http://www.estadistica.lapampa.gov.ar/estadisticas­agropecuarias/repagro.html

Saseendran S.A., T.J. Trout, L.R. Ahuja, L. Ma, G. McMaster, A.A. Andales, J. Chaves & J. Ham. 2015. Quantification of crop water stress factors from soil watermeasurements in limited irrigation experiments. Agric. Syst. 137: 191­-205.

Scianca C. 2010. Cultivos de cobertura en molisoles de la región pampeana. Producción de materia seca, eficiencia en el uso del agua y del nitrógeno e incidencia sobre el cultivo de soja. Tesis Magíster en Ciencias Agrarias. Universidad Nacional del Sur, 134 p.

Servicio Meteorológico Nacional. 2018. Mapas Estadísticos Relacionados con la Precipitación y el Fenómeno "ENOS" en Argentina. En Servicios Climáticos> PronósticoClimático Trimestral> ¿Qué es el niño? /¿Qué es el niña?. http://www3.smn.gov.ar/serviciosclimaticos/?mod=clima&id=111

Silvestri G.E. & C.S. Vera. 2003. Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett. 30: 2115­2118.

Shaw R.H. 1988. Climate requirement. In: Corn and Corn Improvement (G.F. Dudley & J.W. Eds.).3rd Edition. ASA, CSSA and SSSA, Madison, WI, pp. 609­-638.

Spescha L., R. Hurtado & J. Gardiol. 2001. Climatología del agua en el suelo para el cultivo de maíz en la zona de Balcarce (Buenos Aires, Argentina). Rev. Arg. Agromet. (RADA) 1(1): 43­-49.

Trenberth K.E. & D.P. Stepaniak. 2001. Indices of El Niño evolution. J. Climate 14: 1697­-1701.

Tolk J.A., T.A. Howell & S.R. Evett. 1998. Evapotranspiration and yield of corn grown on three high Plains soils. Agron. J. 90: 447­ -454.

Toth Z. & E. Kalnay. 1993. Ensemble forecasting at NMC: The generation of perturbations. Bull. Am. Meteorol. Soc. 74: 2317­-2330.

Vera C., G. Silvestri, V. Barros & A. Carril. 2004. Differences in El Niño response over the Southern. J. climate 17(9): 1741­-1752.

Water Conservation Factsheet 2015. Soil water storage capacity and available soil moisture. Ministry of Agriculture. British Columbia. Factsheet 619.00

Published

2018-11-11

How to Cite

Mendez, M. J., Bongianino, S., Casagrande, G., & Vergara, G. (2018). Impact of ENSO (el Niño southern oscillation) and sowing date on soil water storage evolution in corn. Semiárida, 28(1). https://doi.org/10.19137/semiarida.2018(01).11­22

Issue

Section

Artículos Científicos y Técnicos