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ABSTRACT

The objective of this experiment was to evaluate the effects of the addition of crystalline fructose
and urea to an annual ryegrass­based diet on microbial protein synthesis, fermentation profile and
nutrient apparent digestibility, using continuous culture fermenters. Six fermenters were used in a 3 x
2 factorial arrangement with three levels of  water soluble carbohydrates (WSC) obtained by crystalline
fructose addition (21, 24 and 27 g.100 g DM­1; LWSC, MWSC and HWSC, respectively) and two levels
of CP obtained by urea addition (14.6 and 18.6 g.100 g DM­1, LCP and HCP, respectively). Four 10­d
periods were ran sequentially (7­d for adaptation, 3­d for sampling). Microbial protein synthesis was
assessed by purine to N ratio. There was a positive interaction between WSC and CP level on
microbial protein synthesis (P<0.001). Water soluble carbohydrate level did not affect fermentation
pH, ammonia concentration or total volatile fatty acids concentration (VFA). Greater CP levels also
increased acetic acid proportion and tended to increase acetic to propionic acid ratio, whereas WSC
level did not affect VFA proportions. Treatments did not affect nutrient digestibility. We conclude that
the addition of crystalline fructose to annual ryegrass samples increased microbial protein synthesis
at the greater levels of CP in diet.

KEY WORDS: annual ryegrass, continuous culture, crude protein, microbial protein synthesis, water
soluble carbohydrate

RESUMEN

El objetivo de este experimento fue evaluar los efectos de la adición de fructosa cristalina y urea a
una dieta basada en raigrás anual sobre la síntesis de proteína microbiana, la fermentación y la
digestibilidad de los nutrientes, usando fermentadores de flujo continuo. Se usaron seis fermentadores
de flujo continuo en un arreglo factorial 3x2, con tres niveles de hidratos de carbono solubles (WSC)
obtenidos por la adición de fructosa cristalina (21, 24 y 27 g.100 g MS­1; LWSC, MWSC y HWSC,
respectivamente) y dos niveles de proteína bruta (CP) obtenidos por la adición de urea (14,6 y 18,6
g.100 g MS­1, LCP y HCP, respectivamente). Se corrieron sucesivamente cuatro períodos de 10­d (7­d
para adaptación, 3­d para muestreo). La síntesis de proteína microbiana se estimó por la relación
purinas:N. Hubo una interacción significativa entre niveles de WSC y CP para síntesis de proteína
microbiana (P<0,001). El nivel de WSC no afectó el pH, la concentración de amonio ni la concentración
de ácidos grasos volátiles (VFA). Niveles más altos de CP aumentaron la proporción de ácido acético
y tendieron a aumentar la relación acético propiónico, mientras que el nivel de WSC no afectó las
proporciones de VFA. Los tratamientos no afectaron la digestibilidad de los nutrientes. Concluimos que
la adición de fructosa cristalina a dietas basadas en raigrás anual aumentó la síntesis de proteína
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MATERIAL AND METHODS

Treatments 

Six treatments were designed by a 3 x 2

factorial arrangement of treatments, with three

levels of WSC (21, 24 and 27 g.100 g DM­1;

LWSC, MWSC and HWSC, low, medium and

high WSC, respectively) and 2 levels of CP

(14.6 and 18.6 g.100 g DM­1, LCP and HCP, low

and high CP, respectively); levels were designed

to be within the possible range of annual

ryegrass. A sample of dried (60ºC, 48 h) and

ground (2­mm sieve) annual ryegrass (Lolium
multiflorum, var Enhancer, Sucraseed, OR)

harvested at the stage of flag leaf emergence was

used as the basic feed to which crystalline

fructose (Tate & Lyle, Decatur, IL, US, 99%

purity) and ground urea were added (Table 1).

Feed analysis included determinations of NDF

(Van Soest et al., 1991), ADF (AOAC, 2000),

lignin (Goering & Van Soest, 1970), CP

(AOAC, 2000), soluble protein

(Krishnamoorthy et al., 1982), degradable

protein (Krishnamoorthy et al., 1983), WSC

(Dubois et al., 1956; Hall, 2013), ether extract

(AOAC, 2000), and starch content (Hall, 2009).

Continuous culture fermenters

The six dual­flow continuous culture

fermenters used in this experiment were a

modified version of the design described by

Teather and Sauer (1988). Solid passage rate was

set at 5%. h­1 and liquid dilution rate at 12%.h­1,

by regulating the buffer infusion pumps at 90

mL.h­1. Each treatment was run for four 10­d

periods sequentially (7­d for adaptation, 3­d for

sampling). Whole rumen contents were taken

from cannulated Holstein dairy cows fed a ration

comprised of corn silage, grass hay and a grain­

mix diet. All surgical and animal care protocols

were approved by the Clemson University

Animal Care and Use Committee (Protocol

2016­034). Liquid and solid ruminal contents

were transported to the laboratory and

homogenized in a blender while purged with

CO2. The blended mix was filtered through

double layer cheesecloth and mixed with the

buffer (Slyter et al., 1966) at a 1:1 ratio and

added into the continuous culture fermenter

vessel (approximately 750­mL total volume).

INTRODUCTION

Rumen microbes are able to synthetize

microbial protein from non­protein N sources

(Clark et al., 1992). For this synthesis to be

efficient, water soluble carbohydrates (WSC) to

CP ratio (WSC:CP) seems to be determinant

(Johnson, 1976; Edwards et al., 2007; Hall &

Huntington, 2008). Hoover and Stokes (1991)

analyzed a range of NSC:RDP ratios within 2

and 10 and found that lower ratios led to higher

microbial crude protein synthesis. However,

high quality grasses (i.e., annual ryegrass,

Lolium multiflorum) often can often show ratios

lower than 2, from which little is known. This

imbalance in turn leads to ammonia buildup in

the rumen, which microorganisms cannot

efficiently capture (Stern et al., 1978) reducing

N use inefficiency (Da Silva et al., 2014). 

Temperate grasses store energy in the form of

fructans, commonly called water soluble

carbohydrates (WSC) or sugars. Grass WSC:CP

ratio can vary due to several factors (Parsons et
al., 2004; Mayland et al., 2005; Gregorini et al.,
2006; Moorby et al., 2006; Cosgrove et al.,
2007). Fructans are readily available to

microorganisms immediately after entering the

rumen (Johnson, 1976), thus providing carbon

skeletons and energy. Therefore, increased

supply of WSC in diets high in non­protein N

could improve N efficiency and microbial

protein synthesis (Mansfield et al., 1994). In

fact, Edwards et al. (2007) reviewed several

research articles in dairy cattle and found that as

WSC:CP ratio increases, the proportion of

nitrogen lost by urine decreases. On the other

hand, it is known that microbial protein

synthesis depends partially on N supply. Most

research shows that increasing true protein

supply, in the form of polypeptides,

oligopeptides or aminoacids, enhance microbial

growth over ammonia (Hoover & Stokes, 1991),

but little is known about the ability of

microorganisms to capture inorganic N at

contrasting levels of WSC supply. The objective

of this experiment was to create contrasting

WSC:CP ratios adding urea and fructose to an

annual ryegrass based diet, to evaluate the effect

on microbial protein synthesis, fermentation and

digestibility
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The temperature was kept at 39.5°C by a

circulating heated water bath (Julabo, PA, USA).

Fermenters were constantly purged with CO2

(20 mL.min­1). Fermenters were fed 20 g DM of

the respective treatment per day at 0800 and

1600.

Sample collection and measurements

Overflow volume was recorded daily in
refrigerated vessels. After measuring volume, a
10­mL sample of overflow was taken with a wide
mouth (0.8 mm opening) pipette. This sample was
used to estimate overflow DM content. Samples
of overflow were kept to estimate NDF and ADF
content, as well as to estimate the N to purine ratio
and microbial protein synthesis (Zinn & Owens,

1986). Apparent DM, NDF and ADF
digestibilities were estimated through simple
weight differences between fed and outflow, while
true DM digestibility was calculated subtracting
bacterial DM outflow. Neutral detergent fiber and
ADF content of the overflow were estimated in an
ANKOM 2000 analyzer (Van Soest et al., 1991).
Samples from overflow were treated to isolate a
bacterial pellet in which to estimate the N to purine
ratio, using differential centrifugation. Purine
content in bacterial pellet and overflow was
determined according to Zinn and Owens (1986). 

Samples from the culture were collected at ­2,
0, 2, 4, 6 and 8 h, with 0 h being the first daily
feeding time at 0800. Culture pH (Hanna
Instruments, Woonsocket, RI) was recorded at the

same sampling times (plus an additional
measurement at 1 h). A 4­ml sample
was transferred into polycarbonate
tubes containing 1­ml of 25g.100­ml­1

metaphosphoric acid. These samples
were used to determine ammonia and
VFA concentration. Ammonia
concentration was estimated by
colorimetric technique (Chaney &
Marbach, 1962). 

Volatile fatty acid concentrations
were analyzed by gas chromatography
with flame ionization detector on a
Zebron ZB­FFAP 30 m x 0.25 mm x
0.25μm column (Phenomenex,
Torrance, CA). The injection volume
was 0.1 μl and samples were injected
with a split ratio 10:1. Injector was kept
at 270°C and detector at 250°C. The
carrier gas was hydrogen at a flow rate
of 26.9 mL.min­1. Column oven
temperature was programmed to
increase from 120 to 150°C at a rate of
12°C.min­1, and from 150 to 220°C at a
rate of 20 °C.min­1. Standard curves
were run for each VFA using a standard
VFA mix (Sigma­Aldrich VFA mix,
PA, US) to estimate total VFA
concentration (mM) as well as the molar
proportions of individual VFA.

Statistical analyses

Dry matter, a­NDF and ADF

digestibilities, as well as microbial

protein synthesis data, were analyzed

using the mixed procedure of SAS

Contrasting levels of fructose and urea added to an annual ryegrass based diet: effects on microbial protein synthesis, nutrient

digestibility and fermentation parameters in continuous culture fermenters

g.100 g DM­1

Diet 

LWSC MWSC HWSC

LCP HCP LCP HCP LCP HCP

CP 14.4 18.7 15.0 18.0 14.5 19.1

SP 5.2 9.3 5.4 9.4 5.0 9.6

RDP 9.8 14.0 10.2 13.7 9.8 14.5

NDF 49.2 49.0 47.4 46.5 45.4 46.1

ADF 30.2 29.5 29.3 29.2 28.9 30.8

ADL 2.9 4.2 2.5 2.9 2.5 2.4

WSC 21.2 21.0 24.1 24.5 27.1 26.9

EE 2.8 1.9 2.8 2.3 2.7 2.2

Starch 2.3 2.2 1.3 2.0 1.1 1.0

Water soluble carbohydrates: LWSC = 21 g WSC.100g DM­1, MWSC: 24g

WSC.100g DM­1, HWSC 27 g WSC.100g DM­1; LCP: 14.6g CP.100g DM­1,

HCP: 18.6g CP.100g DM­1. CP= crude protein, SP= soluble protein, RDP=
Ruminally degradable protein, a­NDF= neutral detergent fiber (residual ash
included), ADF= acid detergent fiber, ADL= lignin (sa), WSC= water soluble
carbohydrates, EE= ether extract. 

Hidratos de carbono solubles: LWSC = 21g WSC.100g DM­1, MWSC: 24g WSC.

100g DM­1, HWSC 27g WSC.100g DM­1; LCP: 14,6g CP.100g DM­1, HCP: 18,6g

CP.100g DM­1. CP= proteína bruta, SP= proteína soluble, RDP= Proteína
degradable a nivel ruminal, a­NDF= Fibra detergente neutro incluyendo cenizas,
ADF= fibra detergente ácido, ADL= lignina, WSC= hidratos de carbono solubles,
EE= extracto etéreo

Table 1. Chemical composition of diets based on annual ryegrass
differing in water soluble carbohydrates and crude protein
content, fed to continuous culture fermenters 

Tabla 1 Composición química de las dietas basadas en raygrás
anual con diferentes contenidos de hidratos de carbono
solubles y proteína bruta en fermentadores de flujo
continuo.
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a quadratic effect of WSC level on average pH,

with MWSC resulting in the lowest values

(Table 2). There was no interaction between

WSC and CP level, or between WSC and

sampling hour for pH (P > 0.05); however, there

was an interaction between CP and sampling

hour (P = 0.003, Figure 1). At 1 h and 2 h post­

feeding, pH was greater in HCP than in LCP

(Figure 1). On the other hand, HCP showed

greater ammonia concentration (Table 2),

because once in the rumen, urea is rapidly

converted into ammonia. Ammonia level peaked

in HCP at 2 h post­feeding and then slowly

decreased, but always showed greater levels of

ammonia than LCP (Figure 2). Greater

concentrations of ammonia agreed with greater

pH detected in HCP at 1 and 2 h post feeding,

which reflects that urea had a buffering effect,

as previously shown by Wanapat et al. (2009).

On the other hand, WSC level had no effect on

ammonia levels, which contrasts with the

findings of Kim et al. (1999), who reported that

(SAS Inst., Inc., Cary, NC) based on the

following model: Yijk= μ + γi + πj + γπij + ρk +

θl + εijkl, where Yijk is the observed value, μ is

the overall mean, γi is the WSC effect (i= 1 to

3), πj is the CP effect (j= 1 to 2), γπij is the

interaction between WSC and CP, ρk is the

random effect of period (k = 1 to 4), θl  is the

random effect of  fermenter, and εijkl is the

experimental error. Ammonia, VFA, and pH data

were analyzed with repeated measures using the

mixed procedure of SAS (SAS Inst., Inc., Cary,

NC). Linear and quadratic contrasts were used

to evaluate the effect of WSC. Significance was

determined at P < 0.05. Differences at 0.05 < P

< 0.10 were discussed as trends. 

Results and Discussion

Fermentation parameters and nutrient

digestibility

There was no effect (P = 0.43) of CP on

average pH (6.28 vs 6.34, for LCP and HCP,

respectively, Table 2). There was a tendency to

Alende, M., Lascano, G. J., Jenkins, T. C., & Andrae, J. G.

CP level
SEM

WSC level
SEM

P­ value

LCP HCP LWSC MWSC HWSC CP WSC lin WSC quad WSC x CP

pH 6.27 6.34 0.07 6.38 6.21 6.32 0.05 NS NS ** NS

NH4
+ 5.95 13.82 0.70 10.17 9.44 10.04 0.74 ** NS NS NS

VFATotal mM
(mM.100 mM­1)

36.86 39.22 2.65 34.84 41.57 37.71 2.46 NS NS ** NS

Acetic 46.01 50.49 0.79 50.04 47.02 47.70 1.22 ** NS NS NS

Propionic 26.17 24.97 0.86 24.90 25.82 25.99 1.02 NS NS NS NS

Isobutyric 0.72 0.63 0.04 0.66 0.69 0.69 0.05 † NS NS NS

Butyric 17.21 16.05 0.67 16.35 16.94 16.61 0.71 * NS NS NS

Isovaleric 1.66 1.27 0.24 1.41 1.64 1.35 0.24 ** NS * NS

Valeric 5.62 4.44 0.42 4.38 5.28 5.42 0.49 * † NS NS

A:P 1.78 2.04 0.07 2.03 1.84 1.86 0.10 † NS NS NS

LWSC, MWSC and HWSC, low, medium and high water soluble carbohydrates, 21, 24 and 27g WSC.100g DM­1. LCP and HCP, low

and high crude protein, 14.6 and 18.6g.100g DM­1. A:P= acetic to propionic ratio. SEM= Standard error mean. NS= not significant.
Significance of the CP, WSC and their interactions were denoted by †=P<0.10, *=P<0.05, **=P<0.01

LWSC, MWSC and HWSC, nivel bajo, medio y alto de hidratos de carbono solubles, 21, 24 y 27g WSC.100g DM­1. LCP y HCP, nivel

bajo y alto de proteína bruta, 14,6 y 18,6g.100g MS­1. A:P= relación acético:propiónico. SEM= error estándar de la media. NS= no
significativo. La significancia de CP, WSC y sus interacciones se señala por: †=P<0,10, *=P<0,05, **=P<0,01

Table 2. Total and individual volatile fatty acids, ph and ammonia concentration in continuous culture fermenters fed
annual ryegrass differing in water soluble carbohydrates and crude protein content

Tabla 2. Concentración de ácidos grasos volátiles totales e individuales, pH y amonio en fermentadores de flujo
continuo alimentados con dietas basadas en raigrás anual variando el contenido de hidratos de carbono
solubles y proteína bruta



feeding. 

Concentration of WSC resulted

in a quadratic effect on total VFA

concentration (P = 0.04, Table 2),

the latter being greater in MWSC.

This is consistent with the lower

pH found in MWSC, since total

VFA is an important determinant

of pH (Dijkstra et al, 2012). The

individual VFA molar proportions

were not affected by WSC, except

for a trend (P= 0.08) to a linear

increase in valeric acid with

increasing WSC level (Table 2).

Contrastingly, Berthiaume et al.
(2010) reported greater

proportion of propionate and

butyrate as well as lower

proportion of acetate in cattle fed

alfalfa with greater nonstructural

carbohydrate content. Kim et al.
(1999) reported greater molar

proportion of butyric acid in

maltodextrin supplemented cattle.

However, in both studies, the

treatments affected ruminal pH,

thereby it is impossible to

elucidate if the changes in VFA

profile were due to substrate, pH

or both. 

On the other hand, CP level

affected both acetic and butyric

acid molar proportion (Table 2).

The proportion of acetic acid was

greater in HCP than in LCP,

whereas the opposite occurred

with butyric acid. Acetic to

propionic acid ratio tended to be

greater in HCP treatments (P=

0.06), even though no differences

were detected in propionic acid

concentration. Finally, HCP level

also showed a lower molar

proportion of isovaleric and

valeric acid (Table 2).  In a

continuous culture experiment,

Calsamiglia et al. (2008)

analyzed the effect of both pH and diet on VFA

concentration and concluded that pH affected

ruminal infusion of maltodextrin reduced rumen

ammonia concentration and reduced the peak of

ammonia concentration immediately after

Contrasting levels of fructose and urea added to an annual ryegrass based diet: effects on microbial protein synthesis, nutrient

digestibility and fermentation parameters in continuous culture fermenters

Figure 1. Continuous culture fermenters pH at different times post feeding
resulting from diets containing low (14.6g.100g DM­1) or high
(18.6g.100g DM­1) CP concentrations (sampling time x CP
interaction, P = 0.003). Error bars = 0.0810, standard error of
the mean. Asterisk indicates differences (P < 0.05) between
diets within sampling time.

Figura 1. Promedio de pH diario en fermentadores de flujo continuo a
diferentes horarios post alimentación, resultante de dietas
conteniendo bajo  (14,6g.100g MS­1) y alto (18,6g.100g MS­1)
contenido de CP (interacción horario de muestreo x CP P=
0,003) . Barras de error= 0,0810, error estándar de la media.
Los asteriscos indican diferencia significativas (P<0,05) entre
medias.

Figure 2. Continuous culture fermenters ammonia concentration at
different times post feeding resulting from diets containing low
(14.6g.100g DM­1) or high (18.6g.100g DM­1) CP
concentrations. Error bars = 0.928, standard error of the mean.
Asterisk indicates differences (P < 0.05) between treatment
means.

Figura 2. Concentración de amonio en fermentadores de flujo continuo a
diferentes tiempos post alimentación con dietas conteniendo
bajo (14,6g.100g MS­1) y alto (18,6g.100g MS­1) contenido de
CP. Barras de error= 0,928, error estándar de la media. Los
asteriscos indican diferencia significativas (P<0,05) entre
medias.
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both acetate and butyrate concentrations.

Culture pH explained 81% of the observed

variation in acetate concentration, which

increased 23.7 mM for each unit increase in pH.

In the case of butyrate, pH explained 36% of the

variation, being both factors negatively related.

Even though the relation between VFA

proportions and pH is more complex, it seems

that culture pH had an effect affecting both

acetate and buyrate proportion. 

Neither WSC level nor CP level affected

(Table 3) apparent DM digestibility (51.39g.100g

DM­1, on average), true DM digestibility

(58.58g.100g DM­1, on average), NDF

digestibility (49.21g.100g DM­1, on average) or

ADF digestibility (40.87g.100g DM­1, on

average). Coincident with our findings,

Mansfield et al. (1994) did not find significant

effects of diet NSC concentration on DM

digestibility. With respect to the effect of highly

fermentable carbohydrates on fiber digestion, it

has been studied previously (Calsamiglia et al.,
2008) and it seems that those effects are also

mediated by pH, which is one of the most

important factors affecting fibrolytic bacteria

activity (Russell and Wilson, 1996). Several

researchers have shown that fiber digestibility is

reduced when average pH is below 6.0 (Mouriño

et al., 2001; Calsamiglia et al., 2008; Disjktra et
al., 2012). Our average pH values were above

6.0 in all the treatments, which implies that the

fermentation environment supported a good

fiber fermentation even at the greater levels of

WSC. On the other hand, the lack of effect of

urea addition on DM and fiber digestibility

coincides with reports by Stern et al. (1978).

Microbial protein synthesis

There was an interaction among CP and WSC

level (P<0.001) on microbial protein synthesis

(Figure 3). At the lower level of CP, there was

no effect of WSC on microbial protein synthesis,

whereas at the greater level of CP, increasing the

level of WSC led to greater microbial protein

synthesis (Figure 3). Kim et al. (1999) reported

greater microbial protein synthesis when

supplying maltodextrin either synchronized with

protein supply or in a continuous infusion.

Coincidently, Henning et al. (1991) found that a

pulse dose of WSC at feeding time was the most

effective way to increase microbial growth in

batch culture. Forages under direct grazing

sometime contain high concentration of soluble

protein and an imbalance between WSC and

highly soluble protein availability (Merry et al.,
2006). This has led to the selection of forage

varieties greater in WSC, which should lead to
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g.100g DM­1
CP level

SEM
WSC level

SEM
P­ value

LCP HCP LWSC MWSC HWSC CP WSC lin WSC qua WSC x CP

App IVDMD 52.65 50.13 1.75 51.62 51.07 51.48 2.01 NS NS NS NS

True IVDMD 58.61 58.55 1.31 58.29 58.04 59.42 1.60 NS NS NS NS

NDFD 50.62 47.81 2.21 49.87 48.92 48.85 2.48 NS NS NS NS

ADFD 42.03 39.72 2.59 44.01 40.66 37.94 3.22 NS NS NS NS

Water soluble carbohydrates: LWSC = 21g.100g DM­1, MWSC: 24g.100g DM­1, HWSC 27g.100g DM­1; CP (crude protein) content:
LCP: 14.6g.100g DM­1, HCP: 18.6g.100g DM­1. IVDMD= in vitro dry matter digestibility, NDFD= neutral detergent fiber in vitro digestibility,
ADFD= acid detergent fiber in vitro digestibility, WSC= water soluble carbohydrate main effect, CP = crude protein main effect, WSC x
CP = water soluble carbohydrate x crude protein interaction. NS= not significant. Significance of the CP, WSC and their interactions
were denoted by †=P<0.10, *=P<0.05, **=P<0.01

LWSC, MWSC and HWSC, nivel bajo, medio y alto de hidratos de carbono solubles, 21, 24 y 27g WSC.100g DM­1. LCP y HCP, nivel
bajo y alto de proteína bruta, 14,6 y 18,6g.100g MS­1. IVDMD= digestibilidad in vitro de la materia seca, NDFD= digestibilidad in vitro
de la FDN, ADFD= digestibilidad in vitro de la FDA, SEM= error estándar de la media. NS= no significativo. La significancia de CP,
WSC y sus interacciones se señala por: †=P<0,10, *=P<0,05, **=P<0,01

Table 3. Dry matter, NDF and ADF digestibility of annual ryegrass differing in water soluble carbohydrates and crude
protein content, fed to continuous culture fermenters 

Tabla 3. Digestibilidad de la FDN, FDA y MS de raigrás anual variando su contenido de hidratos de carbono solubles
y proteína bruta, en fermentadores de flujo continuo



improvements in N use efficiency. Berthiaume

et al. (2010) reported that high NSC alfalfa

varieties increased the efficiency of N use by

bacteria. Similarly, Merry et al. (2006), using

high sugar ryegrass varieties in an in vitro

system, found that the efficiency of N use was

greater for high­sugar ryegrass silage than

control. Additionally, in an in vivo experiment,

high WSC concentration

perennial ryegrass varieties led to

lower rumen ammonia

concentration, greater microbial N

flows to the duodenum and

greater efficiency of microbial

protein synthesis (Merry et al.,
2006). Once in the rumen, WSC

(i.e., fructans and fructose) go

quickly into solution and would

therefore be available for rapid

fermentation, yielding ATP and

VFA that can later be used in

combination with N sources in the

synthesis of microbial protein

(Johnson, 1976). That would

explain the lower VFA

concentration found in HWSC

compared to MWSC, because

part of the produced VFA would

have been used for synthesis of

bacterial aminoacids. Increasing

forage WSC concentration, either

by genetic improvement of

varieties (Cosgrove et al., 2007)

Contrasting levels of fructose and urea added to an annual ryegrass based diet: effects on microbial protein synthesis, nutrient
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Figure 3. Microbial crude protein synthesis (g.d­1) in continuous culture
fermenters from diets containing low (14.6g.100g DM­1) or high
(18.6g.100g DM­1) CP concentrations and low (LWSC= 21g.100g
DM­1), medium (MWSC= 24g.100g DM­1) and high (HWSC=
27g.100g DM­1) WSC content. Error bars = 0.150, standard error
of the mean. Different letter means statistical differences (P< 0.05).

Figura 3. Síntesis de proteína microbiana (g.d­1) en fermentadores de flujo
continuo alimentados con dietas con bajo (14,6g.100g MS­1)  y
alto (18,6g.100g MS­1) contenido de CP y bajo (LWSC= 21g. 100g
MS­1), medio (MWSC= 24g.100g­1) y alto (27g.100g MS­1)
contenido de WSC a 3 diferentes niveles de hidratos de carbono
solubles (WSC) y 2 niveles de proteína bruta en la dieta (CP).
Barras de error= 0,150, error estándar de la media. Letras
diferentes indican diferencias estadísticamente significativas
(P<0.05)

g.100 g DM­1
CP level

SEM
WSC level

SEM
P­ value

LCP HCP LWSC MWSC HWSC CP WSC lin WSC qua WSC x CP

N intake (g.d­1) 2.38 3.03 2.69 2.69 2.74

N outflow (g.d­1) 0.74 0.75 0.03 0.76 0.74 0.74 0.04 NS NS NS NS

N digestion (g.100 g­1) 68.96 74.99 1.41 71.31 72.25 72.36 1.63 ** NS NS NS

Bact N.total N outflow­1 0.39 0.41 0.05 0.40 0.39 0.42 0.05 NS NS NS NS

CP synth (g.100 ADDM­1) 8.52 9.35 0.65 8.72 8.53 9.56 0.81 NS NS NS NS

CP synth (g.100 TDDM­1) 7.42 8.03 0.50 7.59 7.44 8.15 0.61 NS NS NS NS

Water soluble carbohydrates: LWSC = 21g.100g DM­1, MWSC: 24g.100g DM­1, HWSC 27g.100g DM­1; CP (crude protein) content:
LCP: 14.6g.100g DM­1, HCP: 18.6g.100g DM­1. N= nitrogen. CP synth = bacterial crude protein synthesis, expressed as g.100g of
apparent digested DM­1 (ADDM) and as g.100g of truly digested DM­1 (TDDM). NS= not significant. Significance of the CP, WSC and
their interactions were denoted by †=P<0.10, *=P<0.05, **=P<0.01

LWSC, MWSC and HWSC, nivel bajo, medio y alto de hidratos de carbono solubles, 21, 24 y 27g WSC.100g DM­1. LCP y HCP, nivel
bajo y alto de proteína bruta, 14,6 y 18,6g.100g MS­1. N= nitrógeno, CP synth= síntesis de proteína microbiana, expresado como g.100g
de MS aparentemente digerida­1 (ADDM) y como  g.100g de MS realmente digerida­1 (TDDM). NS= no significativo. La significancia
de CP, WSC y sus interacciones se señala por: †=P<0,10, *=P<0,05, **=P<0,01

Table 4. Nitrogen digestion and bacterial crude protein synthesis of annual ryegrass based diets differing in water
soluble carbohydrates and soluble protein content, fed to continuous culture fermenters

Tabla 4. Digestión de la fracción nitrogenada y síntesis de proteína microbiana en dietas basadas en raigrás difiriendo
en contenido de hidratos de carbono soluble y proteína bruta, usando fermentadores de flujo continuo
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or by grazing management strategies (Gregorini

et al., 2006) could therefore lead to

improvements in N use at rumen level, which is

expected to be translated into more efficient N

use for milk and beef production (Merry et al.,
2006). In grazing systems in particular, a more

efficient N use could lead to a decrease in the N

urinary excretion, reducing N leaching into the

soil, which has become an environmental

concern in certain areas (Miller et al., 2001).

It has been suggested that ruminal ammonia

concentrations threshold would be around 5

mg.100mL­1 for an efficient microbial protein

synthesis, with synthesis being impaired below

that threshold (Satter & Slyter, 1974). Our

ammonia concentration values in the low CP

treatments were close to this level

(6.12mg.100mL­1). There was a positive

interaction between WSC and CP levels. We

believe that it is possible that at the lower level

of CP and soluble protein availability, ammonia

concentration became limiting for further

increase in microbial protein synthesis despite

greater WSC supply. This would explain the

differences in our findings and those of

Mansfield et al. (1994) or Henning et al. (1991),

who did not find significant interactions between

non­fibrous carbohydrates level and degradable

protein intake. In their case, the report shows

that ammonia levels in fermentation culture

were not limiting even at the lowest levels of

degradable protein intake, whereas in our case

we were close to the threshold stated by Satter

and Slyter (1974). It should also be considered

that in vivo systems (i.e., live animals) have

mechanisms for N recirculation through saliva

(Hall & Huntington, 2008), whereas in vitro

systems (i.e., continuous culture fermenters)

lack this property. 

IMPLICATIONS

It seems clear that crude protein and water

soluble carbohydrate ratio in forages has an

effect on microbial protein synthesis efficiency.

Proper knowledge of forage composition should

help to define strategies for an improvement of

nitrogen use efficiency. High sugar grasses

might help to improve nitrogen use, especially

in the case of forages high in crude protein. 
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