
Uso de la espectroscopía ATR-FTIR para el estudio de especies adsorbidas y su interacción con superficies adsorbentes
79
SEMIÁRIDA, Vol 36, N° 1. Enero-Junio 2026. ISSN 2408-4077 (online), pp. 71-80
REFERENCIAS BIBLIOGRÁFICAS
Andersson, P. O., Lind, P., Mattsson, A., & Österlund, L. (2008). A novel ATR-FTIR method for functionalised surface
characterisation. Surface and Interface Analysis, 40(5), 623-626.
https://doi.org/10.1002/sia.2661
Andrade, J., Pereira, C. G., de Almeida Junior, J. C., Viana, C. C. R., de Oliveira Neves, L. N., da Silva, P. H. F.,
Valenzuela Bell, M. J., & dos Anjos, V. C. (2019). FTIR-ATR determination of protein content to evaluate whey
protein concentrate adulteration. LWT - Food Science and Technology, 99, 166–172.
https://doi.org/10.1016/j.lwt.2018.09.079
Arroyave, J. M., Waiman, C. C., Zanini, G. P., & Avena, M. J. (2016). Effect of humic acid on the
adsorption/desorption behavior of glyphosate on goethite. Isotherms and kinetics. Chemosphere, 145, 34–41.
https://doi.org/10.1016/j.chemosphere.2015.11.082
Arroyave, J. M., Puccia, V., Zanini, G. P., & Avena, M. J. (2018). Surface speciation of phosphate on goethite as
seen by InfraRed Surface Titrations (IRST). Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy, 199, 57–64.
https://doi.org/10.1016/j.saa.2018.03.043
Arroyave, J. M., Avena, M., & Tan, W. (2022). The two‑species phosphate adsorption kinetics on goethite.
Chemosphere, 304, 135045.
https://doi.org/10.1016/j.chemosphere.2022.2755
Barbeş, L., Rădulescu, C., & Stihi, C. (2014). ATR-FTIR spectrometry characterisation of polymeric materials.
Romanian Reports in Physics, 66(3), 765–777.
https://www.researchgate.net/publication/256297992
Blum, M. M. & John, H. (2012). Historical perspective and modern applications of Attenuated Total Reflectance –
Fourier Transform Infrared Spectroscopy (ATR-FTIR). Drug Testing and Analysis, 4, 298–302.
https://doi.org/10.1002/dta.374
Carabante, I., Grahn, M., Holmgren, A., Kumpiene, J., & Hedlund, J. (2009). Adsorption of As(V) on iron oxide
nanoparticle films studied by in situ ATR-FTIR spectroscopy. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 346, 106–113.
https://doi.org/10.1016/j.colsurfa.2009.05.032
Dilshad, A., Taneez, M., Younas, F., Jabeen, A., Rafiq, M. T., & Fatimah, H. (2022). Microplastic pollution in the
surface water and sediments from Kallar Kahar wetland, Pakistan: occurrence, distribution, and characterization
by ATR-FTIR. Environmental Monitoring and Assessment, 194, Article 511.
https://doi.org/10.1007/s10661-
022-10171-z
Gentile, M. B., Gómez, S. R., Avena, M. J. & Luengo, C. V. (2025). The interaction of phenylphosphonic acid with
the surface of goethite: Isotherms, kinetics, electrophoretic mobility and ATR-FTIR spectroscopy.
Environmental Pollution, 371, 125938.
https://doi.org/10.1016/j.envpol.2025.125938
Grdadolnik, J. (2002). ATR-FTIR Spectroscopy: Its advantages and limitations. Acta chimica Slovenica, 49,
631−642.
Harrick, N. J. (1967). Internal Reflection Spectroscopy. Wiley-Interscience, New York.
Hind, A. R., Bhargava, S. K. & McKinnon, A. (2001). At the solid/liquid interface: FTIR/ATR — the tool of choice.
Advances in Colloid and Interface Science, 93, 91-114.
https://doi.org/10.1016/S0001-8686(00)00079-8
Ismail, A. A., van de Voort, F. R. & Sedman, J. (1997). Fourier transform infrared spectroscopy: Principles and
applications. Techniques and Instrumentation in Analytical Chemistry, 18, 93-139.
https://doi.org/10.1016/S0167-9244(97)80013-3
Kazarian, S. G., & Chan, K. L. A. (2006). Applications of ATR-FTIR spectroscopic imaging to biomedical samples.
Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(7), 858–867.
https://doi.org/10.1016/
j.bbamem.2006.02.011
Luengo, C., Brigante, M., Antelo, J. & Avena, M. (2006) Kinetics of phosphate adsorption on goethite: Comparing
batch adsorption and ATR-IR measurements. Journal of Colloid and Interface Science, 300, 511-518.
https://doi.org/10.1016/j.jcis.2006.04.015
McQuillan, A. J. (2001). Probing Solid–Solution Interfacial Chemistry with ATR-IR Spectroscopy of Particle Films.
Advanced Materials, 13, 1034-1038.
https://doi.org/10.1002/1521-4095(200107)13:12/13<1034::AID-
ADMA1034>3.0.CO;2-7
Mudunkotuwa, I. A., Minshid, A. A. & Grassian, V. H. (2014). ATR-FTIR spectroscopy as a tool to probe surface
adsorption on nanoparticles at the liquid–solid interface in environmentally and biologically relevant media.
Analyst, 139, 870-881.
https://doi.org/10.1039/c3an01684f
Puccia, V., Luengo, C., & Avena, M. (2009). Phosphate desorption kinetics from goethite as induced by arsenate.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348, 221–227.
https://doi.org/10.1016/j.colsurfa.2009.07.026
Rahnemaie, R., Hiemstra, T. & van Riemsdijk, W. H. (2006). Inner- and outer-sphere complexation of ions at the
goethite–solution interface. Journal of Colloid and Interface Science, 302, 403–416.
https://doi.org/10.1016/j.jcis.2005.11.003
Rivera, D., Poston, P. E., Uibel, R. H. & Harris, J. M. (2000). In Situ Adsorption Studies at Silica/Solution Interfaces
by Attenuated Total Internal Reflection Fourier Transform Infrared Spectroscopy: Examination of Adsorption
Models in Normal-Phase Liquid Chromatography. Analytical Chemistry, 72, 1543-1554.
https://doi.org/10.1021/ac990968h